Acknowledgement
This research was supported by 'regional innovation mega project' program through the Korea Innovation Foundation funded by Ministry of Science and ICT (Project Number: 2023-DD-UP-0026) and the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. RS-2023-00217581).
References
- Xia, Q., Ni, M., Chen, M., and Xia, H., "Low-temperature Synthesized Self-supported Single-crystalline LiCoO2 Nanoflake Arrays as Advanced 3D Cathodes for Flexible Lithium-ion Batteries," J. Mater. Chem. A, 7, 6187-6196 (2019).
- Autthawong, T., Yodbunork, C., Ratsameetammajak, N., Namsar, O., Chimupala, Y., and Sarakonsri, T., "Enhanced Electrochemical Performance of Sn(SnO2)/TiO2(B) Nanocomposite Anode Materials with Ultrafast Charging and Stable Cycling for High-performance Lithium-ion Batteries," ACS Appl. Energy Mater., 5, 13829-13842 (2022).
- Kim, Y. B. and Park, G. D., "Synthesis of Porous-structured (Ni, Co)Se2-CNT Microsphere and Its Electrochemical Properties as Anode for Sodium-ion Batteries," Clean Technol., 29, 178-184 (2023).
- Zhu, Y., Huang, Y., and Wang, M., "Three-dimensional Hierarchical Porous MnCo2O4@MnO2 Network towards Highly Reversible Lithium Storage by Unique Structure," Chem. Eng. J., 378, 122207 (2019).
- Sun, C. R. and Kim, J. H., "Development of Bismuth Alloy-based Anode Material for Lithium Ion Battery," Clean Technol., 30, 23-27 (2024).
- Li, Q., Li, H., Xia, Q., Hu, Z., Zhu, Y., Yan, S., Ge, C., Zhang, Q., Wang, X., Shang, X., Fan, S., Long, Y., Gu, L., Miao, G., Yu, G., and Moodera, J. S., "Extra Storage Capacity in Transition Metal Oxide Lithium-ion Batteries Revealed by in situ Magnetometry," Nat. Mater., 20, 76-83 (2021).
- Zhang, J. and Yu, A., "Nanostructured Transition Metal Oxides as Advanced Anodes for Lithium-ion Batteries," Sci. Bull., 60, 823-838 (2015).
- Fang, S., Bresser, D., and Passerini, S., "Transition Metal Oxide Anodes for Electrochemical Energy Storage in Lithium- and Sodium-ion Batteries," Adv. Energy Mater., 10, 1902485 (2020).
- Zhou, S., Zhou, H., Zhang, Y., Zhu, K., Zhai, Y., Wei, D., and Zeng, S., "SnO2 Anchored in S and N co-doped Carbon as the Anode for Long-life Lithium-ion Batteries," Nanomaterials, 12, 700 (2022).
- Cheng, Y., Wang, S., Zhou, L., Chang, L., Liu, W., Yin, D., Yi, Z., and Wang, L., "SnO2 Quantum Dots: Rational Design to Achieve Highly Reversible Conversion Reaction and Stable Capacities for Lithium and Sodium Storage," Small, 16, 2000681 (2020).
- Lu, Z., Kong, Z., Jing, L., Wang, T., Liu, X., Fu, A., Guo, P., Guo, Y., and Li, H., "Porous SnO2/graphene Composites as Anode Materials for Lithium-ion Batteries: Morphology Control and Performance Improvement," Energ. Fuel., 34, 13126-13136 (2020).
- Wang, X., Zheng, T., Cheng, Y., Yin, S., Xia, Y., Ji, Q., Xu, Z., Liang, S., Ma, L., Zuo, X., Meng, J., Zhu, J., and Muller-Buschbaum, P., "SnO2/Sn/Carbon Nanohybrid Lithium-ion Battery Anode with High Reversible Capacity and Excellent Cyclic Stability," Nano Select, 2, 642-653 (2021).
- Zhang, Y., Li, D., Qin, L., Zhao, P., Liu, F., Chuai, X., Sun, P., Liang, X., Gao, Y., Sun, Y., and Lu, G., "Preparation and Gas Sensing Properties of Hierarchical Leaf-like SnO2 Materials," Sensor. Actuat. B-Chem., 255, 2944-2951 (2018).
- Madhu, S., Ramasamy, S., Magudeeswaran, V., Manickam, P., Nagamony, P., and Chinnuswamy, V., "SnO2 Nanoflakes Deposited Carbon Yarn-based Electrochemical Immunosensor towards Cortisol Measurement," J. Nanostructure Chem., 13, 115-127 (2023).
- Narsimulu, D., Naresh, N., Rao, B. N., and Satyanarayana, N., "Rational Design of SnO2 Nanoflakes as a Stable and High Rate Anode for Lithium-ion Batteries," J. Mater. Sci.-Mater. El., 31, 8556-8563 (2020).
- Park, J. S., Jo, J. H., Yashiro, H., Kim, S., Kim, S., Sun, Y., and Myung, S. T., "Synthesis and Electrochemical Reaction of Tin Oxalate-reduced Graphene Oxide Composite Anode for Rechargeable Lithium Batteries," ACS Appl. Mater. Interf., 9, 25941-25951 (2017).
- Ambalkar, A. A., Panmand, R. P., Kawade, U. V., Sethi, Y. A., Naik, S. D., Kulkarni, M. V., Adhyapak, P. V., and Kale, B. B., "Facile Synthesis of SnO2@carbon Nanocomposites for Lithiumion Batteries," New J. Chem., 44, 3366-3374 (2020).
- Ma, C., Jiang, J., Xu, T., Ji, H., Yang, Y., and Yang, G., "Freezedrying-assisted Synthesis of Porous SnO2/rGO Xerogels as Anode Materials for Highly Reversible Lithium/sodium Storage," ChemElectroChem, 5, 2387-2394 (2018).
- Cheng, Y., Huang, J., Qi, H., Cao, L., Luo, X., Li, J., Xu, Z., and Yang, J., "Controlling the Sn-C bonds Content in SnO2@CNTs Composite to Form in situ Pulverized Structure for Enhanced Electrochemical Kinetics," Nanoscale, 9, 18681-18689 (2017).
- Jung, S. M., Kim, D. W., and Jung, H. Y., "Unconventional Capacity Iincrease Kinetics of a Chemically Engineered SnO2 Aerogel Anode for Long-term Stable Lithium-ion Batteries," J. Mater. Chem. A, 8, 8244-8254 (2020).
- Sun, J., Xiao, L., Jiang, S., Li, G., Huang, Y., and Geng, J., "Fluorine-doped SnO2@graphene Porous Composite for High Capacity Lithium-ion Batteries," Chem. Mater., 27, 4594-4603 (2015).
- Cheng, Y., Xie, H., Yu, F., Zhang, J., Wang, Y., Luo, X., Shi, B., and Liu, B., "Facile Fabrication of Three-dimensional Porous Carbon Embedded with SnO2 Nanoparticles as a High-performance Anode for Lithium-ion Battery," Ionics, 27, 4143-4151 (2021).
- Zhan, L., Zhou, X., Luo, J., and Ning, X., "Binder-free Multilayered SnO2/graphene on Ni Foam as a High-performance Lithium Ion Batteries Anode," Ceram. Int., 45, 6931-6936 (2019).
- Wang, M., Wang, X., Yao, Z., Tang, W., Xia, X., Gu, C., and Tu, J., "SnO2 Nanoflake Arrays Coated with Polypyrrole on a Carbon Cloth as Flexible Anodes for Sodium-Ion Batteries," ACS Appl. Mater. Interfaces, 11, 24198-24204 (2019).
- Wang, Z., Chen, L., Feng, J., Liu, S., Wang, Y., Fan, Q., and Zhao, Y., "In-situ Grown SnO2 Nanospheres on Reduced GO Nanosheets as Advanced Anodes for Lithium-ion Batteries," ChemistryOpen, 8, 712-718 (2019).
- Chen, J. S., Cheah, Y. L., Chen, Y. T., Jayaprakash, N., Madhavi, S., Yang, Y. H., and Lou, X. W., "SnO2 Nanoparticles with Controlled Carbon Nanocoating as High-capacity Anode Materials for Lithium-ion Batteries," J. Phys. Chem. C, 113, 20504-20508 (2009).
- Tian, Z., Zhao, J., Li, B., Feng, Y., Song, J., Niu, C., Shao, L., and Zhang, W., "Controllable Synthesis of 3D Porous SnO2/carbon towards Enhanced Lithium-ion Batteries," Ionics, 26, 2773-2779 (2020).
- Liang, J., Yu, X. Y., Zhou, H., Wu, H. B., Ding, S., and Lou, X. W., "Bowl-like SnO2@carbon Hollow Particles as an Advanced Anode Material for Lithium-ion Batteries," Angew. Chem. Int. Ed., 53, 12803-12807 (2014).
- Liu, M., Zhang, S., Dong, H., Chen, X., Gao, S., Sun, Y., Li, W., Xu, J., Chen, L., Yuan, A., and Lu, W., "Nano-SnO2/carbon Nanotube Hairball Composite as a High-capacity Anode Material for Lithium Ion Batteries," ACS Sustainable Chem. Eng., 7, 4195-4203 (2019).
- Zhang, B., Zheng, Q. B., Huang, Z. D., Oh, S. W., and Kim, J. K., "SnO2-graphene-Carbon Nanotube Mixture for Anode Material with Improved Rate Capacities," Carbon, 49, 4524-4534 (2011).
- Chen, T., Pan, L., Liu, X., Yu, K., and Sun, Z., "One-step Synthesis of SnO2-reduced Graphene Oxide-carbon Nanotube Composites via Microwave Assistance for Lithium Ion Batteries," RSC Adv., 2, 11719-11724 (2012).
- Zhang, Z., Wang, L., Xiao, J., Xiao, F., and Wang, S., "One-pot Synthesis of Three-Dimensional Graphene/carbon Nanotube/SnO2 Hybrid Architectures with Enhanced Lithium Storage Properties," ACS Appl. Mater. Interf., 7, 17963-17968 (2015).
- Zhu, X., Zhu, Y., Murali, S., Stoller, M. D., and Ruoff, R. S., "Reduced Graphene Oxide/tin Oxide Composite as an Enhanced Anode Material for Lithium Ion Batteries Prepared by Homogenous Coprecipitation," J. Power Sources, 196, 6473-6477 (2011).
- Sahoo, M. and Ramaprabhu, S., "Solar Synthesized Tin Oxide Nanoparticles Dispersed on Graphene Wrapped Carbon Nanotubes as a Li Ion Battery Anode Material with Improved Stability," RSC Adv., 7, 13789-13797 (2017).
- Liu, Y., Li, X., Haridas, A. K., Sun, Y., Heo, J., Ahn, J. H., and Lee, Y., "Biomass-Derived Graphitic Carbon Encapsulated Fe/Fe3C Composite as an Anode Material for High-performance Lithium Ion Batteries," Energies, 13, 827 (2020).
- Liu, Y., Ju, H. C., Cho, K. K., Ahn, H. J., and Ahn, J. H., "Grape-cluster-like Hierarchical Structure of FeS2 Encapsulated in Graphitic Carbon as Cathode Material for High-rate Lithium Batteries," Appl. Surf. Sci., 630, 157458 (2023).