• Title/Summary/Keyword: Self-calibration Function

Search Result 15, Processing Time 0.03 seconds

Development of a Camera Self-calibration Method for 10-parameter Mapping Function

  • Park, Sung-Min;Lee, Chang-je;Kong, Dae-Kyeong;Hwang, Kwang-il;Doh, Deog-Hee;Cho, Gyeong-Rae
    • Journal of Ocean Engineering and Technology
    • /
    • v.35 no.3
    • /
    • pp.183-190
    • /
    • 2021
  • Tomographic particle image velocimetry (PIV) is a widely used method that measures a three-dimensional (3D) flow field by reconstructing camera images into voxel images. In 3D measurements, the setting and calibration of the camera's mapping function significantly impact the obtained results. In this study, a camera self-calibration technique is applied to tomographic PIV to reduce the occurrence of errors arising from such functions. The measured 3D particles are superimposed on the image to create a disparity map. Camera self-calibration is performed by reflecting the error of the disparity map to the center value of the particles. Vortex ring synthetic images are generated and the developed algorithm is applied. The optimal result is obtained by applying self-calibration once when the center error is less than 1 pixel and by applying self-calibration 2-3 times when it was more than 1 pixel; the maximum recovery ratio is 96%. Further self-correlation did not improve the results. The algorithm is evaluated by performing an actual rotational flow experiment, and the optimal result was obtained when self-calibration was applied once, as shown in the virtual image result. Therefore, the developed algorithm is expected to be utilized for the performance improvement of 3D flow measurements.

New Calibration Methods for improving the Accuracy of AFM (원자간력 현미경의 자율교정법)

  • Kweon, Hyun-Kyu;Go, Young-Chae
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.48-52
    • /
    • 2001
  • In this paper presents an accurate AFM used that is free from the Z-directional distortion of a servo actuator is described. Two mathematical correction methods by the in-situ self-calibrationare employed in this AFM. One is the method by the integration, and the other is the method by inverse function of the calibration curve. The in situ self-calibration method by the integration, the derivative of the calibration curve function of the PZT actuator is calculated from the profile measurement data sets which are obtained by repeating measurements after a small Z-directional shift. Input displacement at each sampling point is approximately estimated first by using a straight calibration line. The derivative is integrated with reference to the approximate input to obtain the approximate calibration curve. Then the approximation of the input value of each sampling point is improved using the obtained calibration curve. Next the integral of the derivative is improved using the newly estimated input values. As a result of repeating these improving process, the calibration curve converges to the correct one, and the distortion of the AFM image can be corrected. In the in situ self-calibration through evaluating the inverse function of the calibration curve, the profile measurement data sets were used during the data processing technique. Principles and experimental results of the two methods are presented.

  • PDF

Determination of Microdosimetric Quantities of Several Neutron Calibration Fields at KAERI

  • Kim, B.H.;Kim, J.S.;Kim, J.L.;Chang, S.Y.;Cho, G.;McDonald, J.C.
    • Journal of Radiation Protection and Research
    • /
    • v.28 no.4
    • /
    • pp.327-335
    • /
    • 2003
  • The commercially available neutron survey meter, the REM500, which uses a tissue equivalent proportional counter (TEPC) and the self-constructed TEPC were used to determine the microdosimetric quantities of several neutron calibration fields at Korea Atomic Energy Research Institute (KAERI). Microdosimetric spectra, absorbed dose, dose equivalent as well as quality factor were derived and compared with several neutron fields which were produced by using the shadow objects to make neutron scattered and being used as a kind of realistic neutron calibration fields at KAERI. The response of REM500 as a function of mean energy was evaluated with these neutron fields using the counts measured and the predetermined reference value. The response of the self-made TEPC and the REM500 was compared using one of the neutron calibration filelds of a $^{252}Cf$ source. The reference quantities of scattered neutron calibration fields were determined using a Bonner Sphere (BS). The value of frequency-mean lineal energy, dose-mean lineal energy and quality factor of two $^{252}Cf$ sources (unmoderated and $D_2O$ moderated) were determined to check the differences in the reference neutron fields between KAERI and Pacific Northwest National Laboratory (PNNL, USA) and the results were in good agreement within 1%. It means that there is no big difference in dosimetric quantifies of neutron calibration fields of two laboratories.

Self-Calibration for Direction Finding in Multi-Baseline Interferometer System (멀티베이스라인 인터페로미터 시스템에서의 자체 교정 방향 탐지 방법)

  • Kim, Ji-Tae;Kim, Young-Soo;Kang, Jong-Jin;Lee, Duk-Yung;Roh, Ji-Hyun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.4
    • /
    • pp.433-442
    • /
    • 2010
  • In this paper, self-calibration algorithm based on covariance matrix is proposed for compensating amplitude/phase mismatch in multi-baseline interferometer direction finding system. The proposed method is a solution to nonlinear constrained minimization problem which dramatically calibrate mismatch error using space sector concept with cost function as defined in this paper. This method, however, has a drawback that requires an estimated initial angle to determine the proper space sector. It is well known that this type of drawback is common in nonlinear optimization problem. Superior calibration capabilities achieved with this approach are illustrated by simulation experiments in comparison with interferometer algorithm for a varitiety of amplitude/phase mismatch error. Furthermore, this approach has been found to provide an exceptional calibration capabilities even in case amplitude and phase mismatch are more than 30 dB and over $5^{\circ}$, respectively, with sector spacing of less than $50^{\circ}$.

Mapping of Work Function in Self-Assembled V2O5 Nanonet Structures

  • Park, Jeong Woo;Kim, Taekyeong
    • Journal of the Korean Chemical Society
    • /
    • v.61 no.1
    • /
    • pp.12-15
    • /
    • 2017
  • We presented a mapping the work function of the vanadium pentoxide ($V_2O_5$) nanonet structures by scanning Kelvin probe microscopy (SKPM). In this measurement, the $V_2O_5$ nanonet was self-assembled via dropping the solution of $V_2O_5$ nanowires (NWs) onto the $SiO_2$ substrate and drying the solvent, resulting in the networks of $V_2O_5$ NWs. We found that the SKPM signal as a surface potential of $V_2O_5$ nanonet is attributed to the contact potential difference (CPD) between the work functions of the metal tip and the $V_2O_5$ nanonet. We generated the histograms of the CPD signals obtained from the SKPM mapping of the $V_2O_5$ nanonet as well as the highly ordered pyrolytic graphite (HOPG) which is used as a reference for the calibration of the SKPM tip. By using the histogram peaks of the CPD signals, we successfully estimated the work function of ~5.1 eV for the $V_2O_5$ nanonet structures. This work provides a possibility of a nanometer-scale imaging of the work function of the various nanostructures and helps to understand the electrical characteristics of the future electronic devices.

A New Hybrid Evolutionary Programming Technique Using Sub-populations with Different Evolutionary Behaviors and Its Application to Camera Calibration (서로 다른 진화 특성을 가지는 부집단들을 사용한 새로운 하이브리드 진화 프로그래밍 기법과 카메라 보정 응용)

  • 조현중;오세영;최두현
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.35C no.9
    • /
    • pp.81-92
    • /
    • 1998
  • A new hybrid technique using several sub-populations having completely different evolutionary behaviors is proposed to increase the possibility to quickly find the global optimum of continuous optimization problem. It has three sub-populations. Two NPOSA algorithms showing good performance in the problem having a rugged fitness function are applied to two sub-populations and a self-adaptive evolutionary algorithm to the other sub-population. Sub-populations evolve in different manners and the interaction among these sub-populations lead to the global optimum quickly. The efficiency of this technique is verified through benchmark test functions. Finally, the algorithm with three sub-populations has been applied to seek for the optimal camera calibration parameters. After an error function has been defined using measured feature points of a calibration block, it has been shown that the algorithm searches for the camera parameters that minimize the error function.

  • PDF

Development of Portable Memory Type Radiation Alarm Monitor (휴대용 메모리형 방사선 경보장치 개발)

  • Son, Jung-Kwon;Lee, Myung-Chan;Song, Myung-Jae
    • Journal of Radiation Protection and Research
    • /
    • v.22 no.4
    • /
    • pp.263-272
    • /
    • 1997
  • A Radiation Alarm Monitor has been developed and manufactured in order to protect radiation workers from over-exposure. A visual and audible alarm system has been attached to initiate evacuation when accident occurs such as an unexpected change of radiation level or an over-exposure. The Radiation Alarm Monitor installed with microprocessor can record the information of radiation field change between 90 min. before the alarm and 30 min. after the alarm and also provide the data to an IBM compatible computer to analyze the accidents and to set a counterplan. It features a wide detection range of radiation field(10 mR/h-100 R/h), radiation field data storage, portability, high precision (${\pm}5%$) due to self-calibration function, and adaption of a powerful alarm system. According to ANSI N42.17A, the most stringent test standards, performance tests were carried out under various conditions of temperature, humidity, vibration, and electromagnetic wave hindrance at Korea Research Institute of Standards & Science (KRISS). As a result, the Radiation Alarm Monitor passed all tests.

  • PDF

A Study on Fisheye Lens based Features on the Ceiling for Self-Localization (실내 환경에서 자기위치 인식을 위한 어안렌즈 기반의 천장의 특징점 모델 연구)

  • Choi, Chul-Hee;Choi, Byung-Jae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.4
    • /
    • pp.442-448
    • /
    • 2011
  • There are many research results about a self-localization technique of mobile robot. In this paper we present a self-localization technique based on the features of ceiling vision using a fisheye lens. The features obtained by SIFT(Scale Invariant Feature Transform) can be used to be matched between the previous image and the current image and then its optimal function is derived. The fisheye lens causes some distortion on its images naturally. So it must be calibrated by some algorithm. We here propose some methods for calibration of distorted images and design of a geometric fitness model. The proposed method is applied to laboratory and aile environment. We show its feasibility at some indoor environment.

Combining Two Scales to Assess Risk Factors of Falling in Community-Dwelling Elderly Persons: A Preliminary Study (노인의 낙상에 영향을 주는 요인을 평가하기 위한 ABC-BBS의 적용: 사전연구)

  • Park, So-Yeon
    • Physical Therapy Korea
    • /
    • v.15 no.2
    • /
    • pp.44-53
    • /
    • 2008
  • The purpose of this preliminary study was to develop a measurement for assessing risk factors for falling in community-dwelling elderly persons. Rasch analysis and principal component analysis were performed to examine whether items on the Activities-Specific Balance Confidence (ABC), assessing self-efficacy, and items on the Berg Balance Scale (BBS), assessing balance function, contribute jointly to a unidimensional construct in the elderly. A total of 35 elderly persons (4 men, 31 women) participated. In this study, each item of ABC (16 items) and BBS (14 items) was scored on a 5-point ordinal rating scale from 0 to 4. The initial Rasch and principal component analysis indicated that 3 of the ABC items and 2 of the BBS items were misfit for this study. These 5 items were excluded from further study. After combining ABC and BBS, Rasch and principal component analyses were examined and finally 23 items selected; 12 items from ABC, 11 items from BBS. The 23 combined ABC-BBC items were arranged in order of difficulty. The hardest item was 'walk outside on icy sidewalks' and the easiest item was 'pivot transfer'. Although structural calibration of each 5 rating scale categories was not ordered, the other three essential criteria of Linacre's optimal rating scale were satisfied. Overall, the ABC-BBS showed sound item psychometric properties. Each of the 5 rating scale categories appeared to distinctly identify subjects at different ability levels. The findings of this study support that the new ABC-BBS scale measure balance function and self-efficacy. It will be a clinically useful assessment of risk factors for falling in the elderly. However, the number of subjects was too small to generalize our results. Further study is needed to develop a new assessment considering more risk factors of falling in elderly.

  • PDF

Self-Consistent Parameter Calibration of Combined Mode and Route Choice Model (교통수단 및 노선결정결합모형의 계수산출을 위한 연구)

  • 이용재
    • Journal of Korean Society of Transportation
    • /
    • v.4 no.1
    • /
    • pp.41-71
    • /
    • 1986
  • 본 연구는 $\ulcorner$네트웍$\lrcorner$ 평형모형을 이용하여 일반비용극수(Generalized Cost function)의 모형계수를 결정하는 하나의 방법을 제시한다. 이러한 기법은 동일모형을 실현 하기 위해서는 필연적인 과정이다. 기존의 대부분의 방법은 도시통행상 발생되는 통행자의 제비용을 직접 관측하고 수집하여 모형체계를 결정하였지만 본 연구에서는 이미 활용가능한 기종점별 통행실태조사를 이용하여 통행비용을 내생적으로 결정하고 이에 따른 모형체계를 추출한다. 따라서 본 연구는 자료수집상에 야기될 수 있는 제반 문제점의 행결과 동일목적 의 산출과정을 단순화시키고 내적일관성을 추구하였다는 데에 의의가 있다. 연구의 타당성 검토를 위해 $\ulcorner$시카고$\lrcorner$ 지역에 본 모형과 방법론을 적용하고 결과를 분석하였다.

  • PDF