
1. Introduction

Particle image velocimetry (PIV) is a contactless and quantitative 

flow measurement method that is widely used for internal and external 

flow measurements in various fields, such as fluid machinery, ocean 

engineering, and environment-friendly energy generation. In 

particular, PIV is an effective visualization method for experimental 

approaches in complex marine areas such as the flow field 

measurement of submerged bodies in the ocean (Hong et al., 2019) and 

flow structure analysis of breaking waves (Jo et al., 2009). In this 

method, tracer particles are placed in the fluid flow and the behavior of 

the particles is examined using cameras by particle tracing, thereby 

finding a vector or vector field. This method has evolved from 

two-dimensional (2D) PIV and 2D particle tracking velocimetry 

(PTV) that involve finding a three-dimensional (3D) vector or vector 

field through the use of an observation equation in the images obtained 

from two or more cameras. Various methods have been studied and 

developed, including stereoscopic PIV (SPIV), holographic PIV 

(HPIV), tomographic PIV (TomoPIV), and tomographic PTV 

(TomoPTV) (Arroyo and Greated, 1991; Doh et al., 2012a; Elsinga et 

al., 2006; Hinsch, 2002). 

Among them, TomoPIV is a 3D flow-measurement method that 

reconstructs 2D pixel images that are obtained using several cameras 

as a 3D voxel image and utilizes the 3D cross-correlation in the 

reconstructed voxel image to measure the velocity field (Doh et al., 

2012b; Elsinga et al., 2006). The novelty of TomoPIV is the 

reconstruction of a 3D image from multiple 2D images obtained from 

different perspectives. Among the many 3D reconstruction methods, 

algebraic reconstruction techniques (ART), multiple ART (MART), 

simultaneous ART (SART), and simultaneous multiplicative ART 

(SMART) are widely used (Andersen and Kak, 1984; Byrne, 1993; 

Herman and Lent, 1976). These methods have both advantages and 

disadvantages depending on the calculation time, accuracy, and flow 

field characteristics.
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In 3D measurements using PIV, the observation equation setting of 

cameras and the camera calibration significantly impact the results. 

Thus, many studies have been conducted to improve the observation 

equations and calibration methods (Prasad, 2000; Soloff et al., 1997). 

However, there are camera calibration errors depending on the 

hardware and algorithm. To reduce the occurrence of such errors, a 

volume self-calibration (VSC) method has been developed (Wieneke, 

2008). The VSC method first determines the 2D particle positions in 

the 2D camera images, followed by the positions of all particles that 

can exist in the 3D space. The difference between the positions of 

particles at the time when the particles in the 3D space were projected 

to each camera and the positions of the particles in the image is the 

calibration error of the camera. The error is minimized by a method 

that reflects the error in the position values of the particles and 

performs the calibration again. The VSC method has been 

continuously improved by many researchers (Wieneke, 2008; Lynch 

and Scarano, 2014). 

Among them, Doh et al. (2012a) used an equation derived from 

pinhole model’s observation by exploiting 10 intuitive parameters to 

develop TomoPIV and VolumePTV algorithms, and they compared 

the advantages and disadvantages of each algorithm. In this study, we 

perform self-calibration by using the VSC method through the 

observation equation with 10 parameters proposed by Doh et al. 

(2012a). We also develop a VSC algorithm that improves the 

performance of the TomoPIV and TomoPTV algorithms.

2. Camera Calibration

2.1 Principle of Calibration
The observation equation of cameras is an equation that shows the 

relationship between the camera coordinates and the spatial coordinate 

system; it is expressed as follows:

  (1)

In Eq. (1),   is an observation equation for the image coordinates 

 and the spatial coordinates  for the -th camera. For 

every camera, the corresponding observation equation is used to 

convert the spatial coordinates to the image coordinates. Conversely, a 

point on the image is represented in a 3D space by using the inverse 

transform of Eq. (2):

 
    (2)

In other words, a point on the image is represented by a line-of-sight 

(LOS) function, for which it is expressed in the form of a straight line 

according to the position of  in the space. Therefore, a point on the 

image has a solution corresponding to a straight line in the space, and it 

is represented as a line in each camera. Finally, the position that 

minimizes the LOS error of the matching particles of each camera is 

determined as a 3D position. Various methods of camera observation 

equations have shown the relation between the space and the camera 

image; however, in this study, we used an observation equation that 

had 10 elements [camera’s external elements (     ) and 

internal elements (    )] used by Doh et al. (2012a), which were 

intuitively represented by using the camera distances and rotation 

angles. It is expressed as follows:
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  and   denote the ratio between the image and space for the x- 

and y-axes, respectively, and  denotes the shortest distance between 

the center of the camera and the plane that passes through the 

zero-point of the space.   , and   are the spatial coordinates 

rotated by  , and  on the X-, Y-, and Z-axes, respectively, in the 

space.   and   denote the misalignment between the z-axis in the 

image space and the Z-axis in the 3D space, and ∆ and ∆ are the 

equations that represent the degree of refraction of the lens, which are 

expressed as follows:

∆ ×  (4)

∆ × ,    (5)

2.2 Camera Self-calibration
 The camera calibration uses a 3D position point  in the 

space and a position point  on the image to determine the 

element values of the observation equation that minimize the error of 

Eqs. (3)–(5). It uses special marks such as circles or cross marks on the 

calibration plate to provide the X and Y information; by providing the 

Z information while vertically moving at certain intervals on the 

calibration plate, the 3D position information  is obtained. 

Here, the cameras are used to obtain the image of the calibration plate, 

and image processing is used to obtain the position of the marked 

points, . Using the position information that is obtained in this 

way, the element values of the observation equation are determined in 

such a way that the RMS (root-mean-square) error of the position 

points is minimized; based on this, the camera is calibrated. The 

obtained camera calibration values have many errors arising from the 

error of the mark points on the calibration plate, the error of Z-axis 

movement on the calibration plate, the error of image acquisition 

device, algorithm errors occurring during the process of finding the 

center and finding the optimal solution, and others. These errors have 

adverse effects on the reconstruction of voxel images. Moreover, the 

reliability of the 3D measurement result can be considerably improved 

by minimizing these errors.
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To this end, this study developed a self-calibration method that 

minimizes the errors of the cameras using the process shown in Fig. 1.

The centers of particles are obtained in every camera image. The 

process for self-calibration includes the following steps: (a) The region 

and shape of a virtual 3D voxel space are determined from the entire 

region to be measured. Here, for the size of the voxel image, the ratio 

of the pixel and the voxel is maximally set to 1 to reduce the errors in 

the calculation (Scarano, 2013). (b) The inverse transform of the 

observation equation for the -th particle,   in the image of camera 1 

is utilized to obtain the LOS. (c) The obtained LOS is projected to 

camera 2, and all particles, , within a certain distance (1.5 voxels is 

used in this study) from the LOS are obtained. (d) Particles   and  

that are selected in the two cameras are used to find the 3D position, 

 . In other words,   is the position in the 3D space where two 

straight lines meet, i.e., the LOS of   and the LOS of . (e) When 

the LOS for a single particle is projected to the other camera, the 

projected LOS is a straight line across the image in the other camera. 

Therefore, multiple particles exist on the straight line, and from this, 

results are obtained, including not only the actual particles but also 

many virtual particles. To reduce the number of such virtual particles, 

the obtained 3D particle,  , is projected onto the images of the 

remaining cameras 3 and 4. (f) If a particle exists within a certain 

distance (1.5 voxels) from the position of the particle projected onto 

the camera (  and ), then it is determined to be a real particle; 

otherwise, it is determined to be a virtual particle. (g) For only the 

particles that are determined to be real particles, the new 3D particle’s 

position is calculated using the least square method from the selected 

2D particle positions ( , ,   and ) corresponding to each 

camera. (h) This process is used to find all possible 3D particles for 

every particle of camera 1, and the particles corresponding to the 

coincident regions that are set up based on the voxel position are 

classified and collected. (h) The 3D particles that are collected for each 

region are used to compose a disparity map.

The disparity map refers to an image that shows the difference 

between a particle position on the camera image and a particle position 

that is obtained by projecting onto the image of the camera the 3D 

particle that was calculated using that particle. To obtain the disparity 

map, all 3D particles of the corresponding region are first projected 

onto each camera image in order to obtain the coordinates. The error 

between the projected coordinates and the particle’s center on the 

image is obtained, and the particles of the Gaussian distribution with a 

sigma of 1 voxel are drawn at the position distanced by the error from 

the center and superimposed on the disparity map. In this study, the 

pixel size was magnified by a factor of 10 to improve the accuracy. For 

a high degree of accuracy, it is necessary to superimpose many 

particles deemed as real particles. Therefore, in this study, we 

calculated the 3D positions from thousands of test images until more 

than 10,000 particles are superimposed in each voxel region, and we 

superimposed them on the disparity map to draw the Gaussian 

particles, thereby composing the entire disparity map.

If the peak point is obtained in the disparity map for all regions, then 

the distance between the peak point and the center is the calibration 

error. As the last step, the obtained fixed error is reflected in the center 

value of the particle to perform the recalibration, and the parameters of 

the camera observation equation are then changed to perform the 

self-calibration.

2.3 Evaluation of Camera Self-calibration using Virtual Image
To evaluate the performance of the self-calibration method 

developed in this study, we set the measurement region to be –50 mm 

to 50 mm, –50 mm to 50 mm, and –15 mm to 15 mm on the X, Y, and Z 

axes, respectively. The camera image size was set to 512 × 512 pixels, 

and the cameras were placed in a row by setting the rotation angle of 

the X-axis to –20°, –5°, 5°, and 20°. The voxel size was 500 × 500 × 

150 voxels, and 1 mm corresponds to 5 voxels. To produce a virtual 

image, we used a ring vortex flow field that is expressed by the 

following equation for the flow of particles: 

 






   (6)

where  is the vector size, , and  are the vector components.  

represents the thickness of the ring vortex,   and   denote the 

distance from the center of the ring vortex. Fig. 2 shows the virtual ring 

vortex flow field that is applied in this study, and its thickness and size 

are 16 mm and 40 mm, respectively.

Fig. 1 Process for self-calibraton
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Fig. 2 Ring vortex flow field

In this study, after performing the initial calibration using a virtual 

calibration plate, a particle with a diameter of 2.5 voxels was created in 

the voxel space, and then thousands of virtual particles [particle per 

pixel (PPP) = 0.01] were created. Based on the created voxel image, a 

virtual image was produced again using the following equation:

  
∈
 (7)

where superscript  denotes a pixel in the camera image,  denotes a 

voxel in the 3D space,  is the virtual image, and  is the voxel image. 

 denotes the weight according to the distance between the camera 

pixel’s LOS and voxel. In other words, the brightness of the virtual 

image is determined by the sum of values obtained by multiplying the 

weight by all voxels existing in a certain range of the LOS. In this 

study, the above method was used to produce voxel images and the 

virtual image for each camera.

As explained in Section 2.2, the voxel space was subdivided into 5 × 

5 × 5 regions for the self-calibration, and the process of Section 2.2 

was performed repeatedly for each region, thereby producing a 

disparity map, as shown in Fig. 3.

Fig. 3 shows disparity maps of 125 points according to 25 points on 

the XY plane, and 5 points of z-axis for camera 1. First, in the disparity 

map that is based on the initial calibration values without self- 

calibration, the misaligned center has a large error, but the regions are 

widely distributed. As the self-calibration is performed, the shapes of 

particles in the disparity map converged at the center point and 

improved.

The error in the algorithm was evaluated by assigning a random 

error to the center of the particle in order to evaluate the degree of 

convergence of the self-calibration, and the results are shown in Fig. 4.

As shown in Fig. 4, the errors are high initially because of the given 

random errors, but as the first self-calibration is performed, most of the 

errors were improved. When the center error was 1 pixel or higher, the 

optimal result could be obtained by repeating the self-calibration two 

or three times, and even if the self-calibration was repeated, there was 

no further improvement above a certain level. This result shows that 

the developed self-calibration algorithm significantly improves the 

errors that can occur during the camera calibration process. 

Furthermore, it was found that it is not necessary to repeat the 

self-calibration more than two or three times depending on the error 

size.

Next, a multiplicative algebraic reconstruction technique (MART) 

algorithm was used to reconstruct the voxel image (Atkinson and 

Soria, 2009; Elsinga et al., 2006; Worth et al., 2010; Doh et al., 2012b). 

The MART algorithm is a reconstruction algorithm that is widely used 

in the field of tomography. This method combines the 3D image 

intensity along the LOS to obtain the projected 2D image and 

reconstructs a 3D image by making a comparison with the original 

image. This process is repeated to reconstruct the entire 3D voxel 

Fig. 3 Disparity map of camera 1 with iteration
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Fig. 4 Error rate with given random error of particle’s center

image, and the algorithm is represented by the following equation:

  ∑∈ 



 (8)

where  is the coefficient of convergence, and  is the coefficient of 

weight according to the distance between the LOS for the  coordinate 

of the image selected as the weight and the voxel . In other words, this 

algorithm reconstructs the voxel image in such a way that the ratio of 

the sum of all voxel images existing on the LOS to the brightness of 

the image at the pixel position on the image will converge to 1. The 

voxel image reconstructed by the MART method and the voxel image 

produced virtually were directly compared using the following 

equation to evaluate the accuracy of the proposed algorithm:


∑

 ∙∑
 

∑ ∙  (9)

In Eq. (9),  denotes the recovery ratio, which indicates the 

reconstruction accuracy, and the superscripts  and  represent the 

reconstructed and created voxel images, respectively. Fig. 5 shows the 

recovery ratio of the voxel image according to the PPP (number of 

particles per pixel). Here, the recovery ratio indicates the degree of 

recovery of the particles, which existed before the calculation, after 

performing the calculation based on the virtual image. The voxel 

images were created by setting PPP to 0.002–0.1. The performance of 

the constructed calculation algorithm was determined by evaluating 

the recovery ratio. Fig. 5 shows the reconstruction performance results 

that are expressed by Eq. (9) of the voxel image according to the result 

of the self-calibration for each PPP. When the recovery ratio is 1, it 

means that the reconstructed image and the created image match 

perfectly. 

The “Make” indicator that is illustrated in each figure shows the 

result of reconstructing the voxel image by employing the variable 

values of the cameras used in the voxel image creation, and the “Init” 

indicator shows the result of reconstructing using the camera 

calibration values without the self-calibration. The “Iter. 1,” “Iter. 2,” 

“Iter. 3,” and “Iter. 5” indicators show the results of reconstructing the 

voxel image after performing the self-calibration process 1, 2, 3, and 5 

times, respectively. Furthermore, the x-axis in the figure represents the 

number of iterations in the MART algorithm. The value 0 is the voxel 

value that is initialized using the MLOS (multiplied line-of-sight), and 

finally, the MART algorithm was repeated 10 times for the calculation.

As a result (Make) of performing the MART algorithm with the 

ground truth used in the virtual image creation, a recovery ratio close 

to 90% was obtained. However, it decreased as the PPP increased, 

showing the maximum recovery ratio of about 70% when the PPP was 

0.1. The number of virtual particles increased significantly as the 

number of particles in the space increased, and the voxel ratio 

decreased significantly as the number of particles increased.

“Init.” indicates the recovery ratio when the calibration is performed 

using the calibration plate and the self-calibration is not performed. 

The best recovery ratio is shown when PPP is 0.004, but it decreases 

sharply as the number of particles increases. Based on the result of 

performing the self-calibration algorithm developed in this study, the 

recovery ratio was higher compared to the case when the 

Fig. 5 Recovery ratio with MART iteration, according to change PPP from 0.002 to 0.1
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self-calibration was not performed. A high improvement rate was 

observed in the first self-calibration, but even when the self-calibration 

was performed two, three, or five times, the result was similar to that 

of the first self-calibration. This implies that a good result can be 

obtained by performing self-calibration only once. Furthermore, when 

the MART algorithm was repeated five times with a PPP of 0.05, a 

recovery ratio of 74% was shown based on the recovery ratio of Make, 

but when the self-calibration was performed, a high recovery ratio of 

96% was shown. Based on this result, it was determined that the 

developed self-calibration algorithm exhibits significant improvement.

3. Performance Evaluation Using Experimental Data

To evaluate the performance of the algorithm developed in this 

study, we created an experimental flow, as shown in Fig. 6. The size of 

the water tank was (440 × 440 × 220) mm3, and a pump having a flow 

rate of 540 L/h was installed to create a constantly rotating flow. Then, 

polyamide nylon particles with a diameter of 50 microns were inserted. 

An 8-W Laser System Europe Blits Pro Laser was used as the light 

source, and the laser light was projected with a thickness of about 10 × 

10 mm, as indicated by the green region in Fig. 6. Four high-speed 

cameras were installed by arranging them in a row in such a way that 

Fig. 6 Experimental circulation flow setup

the rotation angle will be approximately –15°, –5°, 5°, and 15° from the 

front side.

A flat calibration plate of a circular pattern was used to perform the 

calibration. Here, the total measurement area was (40 × 10 × 10) mm3. 

Fig. 7 shows an image of the first camera obtained in the experiment. 

To minimize the number of virtual particles, a small number of 

particles were entered to obtain a low-density particle image (1,000 

particles, or about 0.001 PPP in an image of 1,216 × 1,200 resolution); 

then, after performing the self-calibration, a high-density particle 

image (about 10,000 particles or 0.01 PPP) was obtained for the 

tomographic PIV measurement, and the velocity vector was measured.

Fig. 8 shows the disparity map obtained when performing the 

self-calibration. As shown in Fig. 8(a), when the self-calibration was 

 

(a) for self-calibration (b) for tomographic PIV

Fig. 7 Experimental images of camera 1. (a) for self-calibration, PPP ≑ 0.001, (b) for tomographic PIV, ppp = 0.01

(a) Initial calibration (b) First self-calibration (c) Second self-calibration 

Fig. 8 Disparity map of self-calibration
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Fig. 9 Error rate with iteration of self-calibration

not performed, the center of the particle was misaligned sufficiently 

for it to be distinguished by the human eye. In the case of the center, 

most errors were less than 0.2 pixel, but in the case of the flank, some 

errors were larger than 0.5 pixel. When the self-calibration was 

performed, these errors decreased significantly, and after performing 

the first self-calibration, the pixel errors of all points had converged to 

less than 0.2 pixel. However, when the self-calibration was performed 

two or more times, the pixel errors did not change much. This implies 

that a sufficiently good improvement effect can be obtained by 

performing the self-calibration once or twice in the experiment.

To analyze the effect on the actual experimental results, we used a 

fast Fourier transform (FFT) cross-correlation in two recovered 

continuous voxel images to obtain the vector, and we evaluated the 

errors based on the method of using a medium filter expressed by the 

following equation: 

     (10)

In the equation,   is the value located in the middle when a total of 

27 vectors were arranged in 3 × 3 × 3 regions.   is the current vector. 

When the rate of change of the vector was larger than median  , it 

was determined to be an error. Fig. 9 shows the error rate of all vectors 

when the evaluation was performed with the median filter. When the 

camera’s self-calibration was not performed, ~10% of all vectors were 

determined to be errors. After completing the self-calibration stage, the 

error rate decreased to 8.8%, and as the self-calibration was repeated, 

the result showed a slight improvement. However, after repeating it 

more than three times, there was no further improvement in the result. 

Instead, when the self-calibration was performed five times, the error 

rate increased by 0.002%, which was negligible. Based on these 

results, it is found that the optimal frequency of performing the 

self-calibration is three times in the case of the given experiment. 

Furthermore, the optimal frequency of self-calibration can be 

determined through the error rate analysis using the median filter. 

4. Conclusion

This study discusses the measurement performance improvement of 

the TomoPIV method, which is a 3D velocity field measurement 

method of a flow field using an observation equation of a 

ten-parameter-based pinhole model of cameras. Furthermore, we 

developed a self-calibration algorithm that uses the initial calibration 

values of the cameras to calculate the 3D particle positions. After 

producing a disparity map in order to reconvert the 3D positions of 

these particles on a 2D image, it re-corrected the particle positions 

based on it to perform the re-calibration of the camera parameters.

The developed algorithm was used to evaluate virtual images using 

the vortex core flow. When the self-calibration was performed using 

the initial calibration values of the camera parameters, a relatively high 

recovery ratio was observed, and the result improved slightly when the 

calibration was performed repeatedly.

Furthermore, the actual 3D flow was measured using optical devices 

and cameras, and after performing an evaluation using a median 

filter-based method of removing the errors, it was found that the result 

obtained when the self-calibration was performed was much higher 

than that of the conventional calibration method. The optimum number 

of times that the self-calibration was performed could be determined 

through the error rate evaluation using the median filter.

Based on the above results, it was determined that the self- 

calibration method developed in this study can significantly improve 

the 3D PIV/PTV results using 10 parameters.
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