• Title/Summary/Keyword: Self-assembled Monolayer (SAM)

Search Result 131, Processing Time 0.026 seconds

Tuning Electrical Performances of Organic Charge Modulated Field-Effect Transistors Using Semiconductor/Dielectric Interfacial Controls (유기반도체와 절연체 계면제어를 통한 유기전하변조 트랜지스터의 전기적 특성 향상 연구)

  • Park, Eunyoung;Oh, Seungtaek;Lee, Hwa Sung
    • Journal of Adhesion and Interface
    • /
    • v.23 no.2
    • /
    • pp.53-58
    • /
    • 2022
  • Here, the surface characteristics of the dielectric were controlled by introducing the self-assembled monolayers (SAMs) as the intermediate layers on the surface of the AlOx dielectric, and the electrical performances of the organic charge modulated transistor (OCMFET) were significantly improved. The organic intermediate layer was applied to control the surface energy of the AlOx gate dielectric acting as a capacitor plate between the control gate (CG) and the floating gate (FG). By applying the intermediate layers on the gate dielectric surface, and the field-effect mobility (μOCMFET) of the OCMFET devices could be efficiently controlled. We used the four kinds of SAM materials, octadecylphosphonic acid (ODPA), butylphosphonic acid (BPA), (3-bromopropyl)phosphonic acid (BPPA), and (3-aminopropyl)phosphonic acid (APPA), and each μOCMFET was measured at 0.73, 0.41, 0.34, and 0.15 cm2V-1s-1, respectively. The results could be suggested that the characteristics of each organic SAM intermediate layer, such as the length of the alkyl chain and the type of functionalized end-group, can control the electrical performances of OCMFET devices and be supported to find the optimized fabrication conditions, as an efficient sensing platform device.

Effect of HF and Plasma Treated Glass Surface on Vapor Phase-Polymerized Poly(3,4-ethylenedioxythiophene) Thin Film : Part II

  • Lee, Joonwoo;Kim, Sungsoo
    • Journal of Integrative Natural Science
    • /
    • v.6 no.4
    • /
    • pp.215-219
    • /
    • 2013
  • In this study, in order to investigate how consecutive treatments of glass surface with HF acid and water vapor/Ar plasma affect the quality of 3-aminopropyltriethoxysilane self-assembled monolayer (APS-SAM), poly(3,4-ethylenedioxythiophene) (PEDOT) thin films were vapor phase-polymerized immediately after spin coating of FeCl3 and poly-urethane diol-mixed oxidant solution on the monolayer surfaces prepared at various treatment conditions. For the film characterization, various poweful tools were used, e.g., FE-SEM, an optical microscope, four point probe, and a contact angle analyzer. The characterization revealed that a well prepared APS-SAM on a glass surface treated with water vapor/Ar plasma is very useful for uniform coating of FeCl3 and DUDO mixed oxidant solution, regardless of HF treatment. On the other hand, a bare glass surface without APS-SAM but treated with HF and water vapor/Ar plasma generally led to a very poor oxidant film. As a result, PEDOT films vapor phase-polymerized on APS-SAM surfaces are far superior to those on bare glass surfaces in the quality and electrical characteristics aspects.

Octadecyltrichlorosilane Self-Assembled Monolayers에 따른 FTIR 분석

  • Kim, Jong-Uk;Kim, Heung-Bae
    • Proceedings of the Korean Society Of Semiconductor Equipment Technology
    • /
    • 2007.06a
    • /
    • pp.43-46
    • /
    • 2007
  • 기존 사용되어온 절연막의 $SiO_2$의 절연특성이 신호의 간섭 등의 문제가 있어서 절연특성을 좋게 하기 위해 낮은 유전상수와 비결정질의 절연막을 요구하고 있다. 본 연구에서는 OTS를 이용하여 액상 상태에서 SAMs를 형성하였으며 FTIR을 이용한 결합구조의 변화를 살펴보았다. OTS 유기물의 함량을 0.1%에서부터 0.9%까지 다르게 혼합하여 희석시킨 유기화합물 용액에 따른 $650\;cm^{-1}$에서 $4000\;cm^{-1}$까지 전구간에 대한 FTIR 스펙트라를 보았다.

  • PDF

The effects of non-condensable gas on condensation heat transfer on a super-hydrophobic surface tube (초소수성 코팅 튜브에서의 비응축가스 영향에 대한 응축 열전달 연구)

  • Ji, Dae-Yun;Kim, Daeho;Lee, Kwon-Yeong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.4
    • /
    • pp.517-524
    • /
    • 2018
  • This purpose of this research is to observe the influence of non-condensable gas (NCG) on a horizontal super-hydrophobic aluminum tube and compare it with a bare aluminum tube. To achieve super-hydrophobic characteristics, an aluminum tube was coated with a Self-Assembled Monolayer (SAM). The overall heat transfer coefficient U was used to represent the condensation performance. The NCG mass fraction was the main variable, and its range was 0.08 to 0.45. The condensation performance of the SAM tube and bare tube increased with decreasing mass fraction of NCG. The SAM tube showed 1.9 to 2.5 times larger dropwise condensation performance than the bare tube. When the mass fraction of NCG decreased in the SAM tube, the rate of increase of the SAM tube was lower because flooded condensation occurred. In addition, filmwise condensation occurred in the SAM tube when more active condensation was generated, and its performance was lower than that of the bare aluminum tube. The flooded and filmwise condensation in the SAM tube is explained by the pinning effect. In conclusion, controlling the condition of the condenser is necessary to improve the condensation performance by surface modification a SAM.

Fabrication and chracteristics of MOSFET type protein sensor using extended gate (Extended Gate를 이용한 MOSFET형 단백질 센서 제작 및 특성)

  • Lee, Sang-Kwon;Sohn, Young-Soo;Choi, Sie-Young
    • Journal of Sensor Science and Technology
    • /
    • v.16 no.2
    • /
    • pp.104-109
    • /
    • 2007
  • In this paper, we have fabricated on extended-gate field effect transistor (EGFET)-type protein sensor for the application to a CRP detection. We used the self-assembled monolayer (SAM) to adhere or entrap biomolecules, namely CRP antibodies. The experimental result shows that the proposed SAM is well immobilized on the gold gate surface. So the drain current was varied by antigen-antibody interactions on the gate surface because of the CRP charge. Experimental results related to the formation of SAM, antibody, antigen were obtained by measuring the electrical characteristics of the EGFET device.

Front-side Texturing of Crystalline Silicon Solar Cell by Micro-contact Printing (마이크로 컨텍 프린팅 기법을 이용한 결정질 실리콘 태양전지의 전면 텍스쳐링)

  • Hong, Jihwa;Han, Yoon-Soo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.11
    • /
    • pp.841-845
    • /
    • 2013
  • We give a textured front on silicon wafer for high-efficiency solar cells by using micro contact printing method which uses PDMS (polydimethylsiloxane) silicon rubber as a stamp and SAM (self assembled monolayer)s as an ink. A random pyramidal texturing have been widely used for a front-surface texturing in low cost manufacturing line although the cell with random pyramids on front surface shows relatively low efficiency than the cell with inverted pyramids patterned by normal optical lithography. In the past two decades, the micro contact printing has been intensively studied in nano technology field for high resolution patterns on silicon wafer. However, this promising printing technique has surprisingly never applied so far to silicon based solar cell industry despite their simplicity of process and attractive aspects in terms of cost competitiveness. We employ a MHA (16-mercaptohexadecanoic acid) as an ink for Au deposited $SiO_2/Si$ substrate. The $SiO_2$ pattern which is same as the pattern printed by SAM ink on Au surface and later acts as a hard resist for anisotropic silicon etching was made by HF solution, and then inverted pyramidal pattern is formed after anisotropic wet etching. We compare three textured surface with different morphology (random texture, random pyramids and inverted pyramids) and then different geometry of inverted pyramid arrays in terms of reflectivity.