• Title/Summary/Keyword: Self-Repair

Search Result 189, Processing Time 0.025 seconds

Off-chip droplet manufacturing technology for self-healing capsule production (자가 치유 캡슐 제작을 위한 off-chip 방식의 드랍렛 제작 기술)

  • Ji, Dong-Min;Song, Won-Il;Lee, Ja-Sung;Ramos-Sebastian, Armando;Park, Se-Jin;Choi, Geon;Kim, Sung-Hoon
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.11a
    • /
    • pp.247-248
    • /
    • 2022
  • The microfluidic controlled droplet production system is one of the most powerful methods for capsule manufacturing. However, stable production is not possible when the powder is included. We solved the above problem by developing an off-chip droplet production system. we checked the droplet creation mechanism and created a simple repair model. It was possible to produce a uniform and stable droplet regardless of the powder content.

  • PDF

A Study on the Mechanical Properties of Polymer Repair-Mortars with CFBC Ash (순환유동층 보일러애시를 활용한 폴리머 보수 모르타르의 역학적 특성에 대한 연구)

  • Kang, Yong Hak;Lim, Gwi Hwan;Shin, Dong Cheol;Choi, Young Cheol
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.5
    • /
    • pp.127-132
    • /
    • 2018
  • The amount of generated Circulating Fluidized Bed Combustion ash (CFBC ash) is annually increasing, but most CFBC ash has been landfilled and discarded due to the limited utilization. The major chemical compositions of CFBC ash are $SiO_2$, CaO and $CaSO_4$, which could form hydration products by reacting with water as self-cementing property such as cement. The purpose of the this study is to derive the optimal mix proportions to improve polymer-modified mortar with the use of CFBC ash which has the self-cementing property. In order to develop polymer-modified mortar, three mix proportions were determined, and fundamental properties for the mixtures were obtained. As a result, the optimal mixture containing 10 percent of silica fume, 1.0 percent of polymer and 3.5 percent of expansive additives were proposed in this study.

Development of a Spray-Injection Patching System and a Field Performance Evaluation of 100% RAP Asphalt Mixtures using a Rapid-Setting Polymer-Modified Asphalt Emulsion (아스팔트 긴급보수용 스프레이 패칭 장비 개발 및 현장 적용성 평가)

  • Han, Soo Hyun;Lee, Sang Yum;Rhee, Suk Keun;Kwon, Bong Ju
    • International Journal of Highway Engineering
    • /
    • v.20 no.1
    • /
    • pp.77-85
    • /
    • 2018
  • PURPOSES : The purpose of this study was to develop an urgent road-repair system and perform a field applicability test, as well as discover the optimum mix design for machine applications compared to the optimum mix design for lab applications. METHODS : According to reviews of the patent and developed equipment, self-propelled and mix-in-place equipment types are suitable for urgent pavement repair, e.g., potholes and cracks. The machine-application mix design was revised based on the optimum lab-test mix design, and the field application of a spray-injection system was performed on the job site. The mixture from the machine application and lab application was subjected to a wet-track abrasion test and a wheel-tracking test to calibrate the machine application. RESULTS and CONCLUSIONS : This study showed that the binder content could differ for the lab application and the machine application in the same setting. Based on the wet-track abrasion test result, the binder contents of the machine application exceeded the binder contents of the lab application by 1-1.5% on the same setting value. Moreover, the maximum dynamic stability value for the machine application showed 1% lower binder contents than the maximum lab-application value. Collectively, the results of the two different tests showed that the different sizes and operating methods of the machine and lab applications could affect the mix designs. Further studies will be performed to verify the bonding strength and monitor the field application.

A Study on Human Injury Characteristics and Vehicle Body Deformation with Car to Car Crash Test for Crash Compatability (${\cdot}$${\cdot}$대형 중고 승용차량에 대한 차 대 차 충돌시험을 통한 차체변형 및 인체상해 특성에 관한 연구)

  • Lim, Jong-Hun;Park, In-Song;Heo, Seung-Jin
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.6
    • /
    • pp.135-141
    • /
    • 2005
  • Currently many safety assessment tests are conducted by crashing a vehicle against a rigid or deformable barrier. It is quite rational to evaluate crash performance of a vehicle in a barrier test in terms of vehicle stiffness and strength. However, there has been a lot of debate on whether barrier testing is a duplicate of real world crash collisions. One of the issues is car to car compatability. There are two essential subjects in compatability. One is partner-protection when crashing into another vehicle and the other is self-protection when struck by another vehicle. When considering a car to car frontal crash between a mini car and a large heavy car, it is necessary to evaluate human body stiffness of each vehicle. In this study, in order to evaluate the compatability of cars in car-to-car crashes, four tests were conducted. Test speed of each car is 48.3km/h, and the overlap of the mini and large car is $40\%$, and the overlap of the small cars is $100\%$. In all tests, only a drive dummy is used. The test results of the car to car crash test show that vehicle safety standard of mini car is not satisfied compared with large heavy car and HIC value of mini car is higher than large car. In this case observed that the relatively lower stiffness and weight of the mini car resulted in absorbing a large share of the total input energy of the system when crashed into the large heavy car.

Experimental Study on the Manufacturing and Waterproofing Properties of Self-healing Concrete Waterproofing Agent Using Microcapsules (마이크로캡슐을 활용한 자기치유 구체방수제의 제조 및 방수특성에 관한 실험적 연구)

  • Yun-Wang Choi;Jae-Heun Lee;Neung-Won Yang
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.4
    • /
    • pp.289-298
    • /
    • 2023
  • In this study, the development of a self-healing concrete waterproofing agent was examined, focusing on its manufacturing and waterproofing properties. The optimal ratio using microcapsules for the concrete waterproofing agent was determined through assessments of flow, compressive strength, and permeability conducted during the mortar stage. These findings aimed to provide fundamental data for evaluating the self-healing properties of the concrete waterproofing agent designed for use in concrete structures. The self-healing concrete waterproofing agent was comprised of three types of inorganic materials commonly used for repair purposes. From experimental results, a composition ratio with a high potassium silicate content, referred to as SIM-2, was found suitable. A surfactant mixing ratio of 0.03 % was identified to enhance the dispersibility of the concrete waterproofing agent, while a mixing ratio of 0.2 % distilled water was deemed suitable for viscosity adjustment. For the magnetic self-healing concrete waterproofing agent's healing agent, using microcapsules in the range of 0.5 % to 0.7 % met the KS F 4949 and KS F 4926 standards.

Development of Self-Repairing Smart Concrete Using Micro-Biologically Induced Calcite Precipitation (미생물의 방해석 석출 작용을 이용한 자기보수 스마트 콘크리트 개발에 관한 연구)

  • Kim, Wha-Jung;Ghim, Sa-Youl;Park, Sung-Jin;Choi, Kil-Jun;Chun, Woo-Young
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.4
    • /
    • pp.547-557
    • /
    • 2010
  • This paper presents a study on the development of next generation smart concrete in an eco-friendly manner using micro-biologically induced calcite precipitation (MICP) via microbial biomineralization. It seems that currently, the reformation and functional improvement of concrete using MICP can be achieved using Sporosarcina pasteurii, which is a representative microorganism that produces calcite precipitation. Based on previous studies on MICP the biochemical tests and crystallinity evaluation of cement using sporoasrcina pasteurii and four additional micro-organisms from the concrete structures as identified by 16S rDNA sequence analysis were conducted. Also by applying the Sporosarcina pasteurii and separated four effective micro-organisms from the concrete structures to mortar, the compressive strength improvement by varying curing conditions, repair of crack were examined, and plans for future study were suggested. The effect of the application of effective micro-organisms can lead to the development of a new material that will contribute to resolution of environmental problems and facilitate repair work, and this can also serve as a new research theme in the future. In addition, the importance of this study is to use micro-organism, which is found common in concrete structures, this new microbial is not only environmentally safe but also persists in the natural environment for an extended period of time. Therefore, it seems to have a great potential to became a new environmentally low-burdened functional material.

Ability to Resist Chloride Ion Penetration and Dry Shrinkage Evaluation of Magnesium Phosphate Ceramics (인산마그네슘 세라믹의 염소 이온 투과 저항성 및 길이변화 특성에 관한 성능 평가)

  • Ko, Jeong-Won;Yang, Wan-Hee;Park, Dong-Cheol
    • Journal of the Korea Institute of Building Construction
    • /
    • v.17 no.4
    • /
    • pp.341-348
    • /
    • 2017
  • The performance degradation of concrete pavement by winter deicer is very serious in Korea, and its maintenance and rehabilitation brings a high expense. Therefore, a suitable method for rehabilitation of such concrete pavement and repair material of proper performance are required. In this study, the properties of compressive strength, ability to resist chloride ion penetration, and properties of dry shrinkage of magnesium phosphate ceramics were assessed to evaluate its applicability as a repair material for concrete pavement in Korea. As a result, the mortar flow showed a normal level of 190 mm, but the viscosity was high and the self-flow ability was poor. The setting time was 12 minutes, leading very rapid-hardening, and thus a prompt work was required. The compressive strength of mortar was 38.4MPa in 2 hours, 73.8MPa in 24 hours, and 111.0MPa in 28 days, showing a significant level. As a result of the test to chloride ion penetration resistance, mortar showed 143 Coulombs, and concrete showed 172.6 Coulombs, which fell under very low level. The drying shrinkage of MPC concrete in 40 days was below $60{\times}10-6$, and comparing with normal cement concrete, it showed the level below 1/10 of other concrete to secure an excellent volume stability. As above, magnesium phosphate ceramics has excellent strength performance, chloride ion penetration resistance, and volume stability, and this in the future shall be used in construction under the consideration of working time or workability, requiring further improvement for such performance.

A Study on the Development of Low Pass Filter for Chopper Gate Control Unit of Electric Rolling Stock (부산도시철도 1호선 전동차 Low Pass Filter 개발연구)

  • Kang, Hyun-Chul;Kim, Hae-Chang;Park, Hee-Chul
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.1445-1456
    • /
    • 2011
  • This paper presents the research of Low Pass Filter(hereinafter called "LPF") which is the part of Chopper Gate Control Unit on the electric rolling stock. Chopper Gate Control Unit controling the propulsive equipments of electric rolling stock consists of several electronic parts, PCB, Power Supply, Gate Circuit Amp, Freon Cooling Device, and has been used the parts made by japan manufacturer Mitsubish. But these parts recently have been more broken down and slow down performance because of long-term use, deterioration. Most of the malfunctions are low performance of LPF. Furthermore, it is physically impossible to repair LPF. Because it is molding type part and no longer manufactured. Also it needs high cost for custom-building. Therefore, it is now making up for through self-developed LPF and operating on Busan metro 1st after on-board testing. This research performed the PS Pice simulation testing, analysis of self-developed LPF performance and the wave form characteristic by multi-function synthesizer, spectrum analyzer, oscilloscope.

  • PDF

Complete Genome and Calcium Carbonate Precipitation of Alkaliphilic Bacillus sp. AK13 for Self-Healing Concrete

  • Jung, Yoonhee;Kim, Wonjae;Kim, Wook;Park, Woojun
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.3
    • /
    • pp.404-416
    • /
    • 2020
  • Bacteria that are resistant to high temperatures and alkaline environments are essential for the biological repair of damaged concrete. Alkaliphilic and halotolerant Bacillus sp. AK13 was isolated from the rhizosphere of Miscanthus sacchariflorus. Unlike other tested Bacillus species, the AK13 strain grows at pH 13 and withstands 11% (w/v) NaCl. Growth of the AK13 strain at elevated pH without urea promoted calcium carbonate (CaCO3) formation. Irregular vaterite-like CaCO3 minerals that were tightly attached to cells were observed using field-emission scanning electron microscopy. Energy-dispersive X-ray spectrometry, confocal laser scanning microscopy, and X-ray diffraction analyses confirmed the presence of CaCO3 around the cell. Isotope ration mass spectrometry analysis confirmed that the majority of CO32- ions in the CaCO3 were produced by cellular respiration rather than being derived from atmospheric carbon dioxide. The minerals produced from calcium acetate-added growth medium formed smaller crystals than those formed in calcium lactate-added medium. Strain AK13 appears to heal cracks on mortar specimens when applied as a pelletized spore powder. Alkaliphilic Bacillus sp. AK13 is a promising candidate for self-healing agents in concrete.

Design and Implement a Smart Automobile Self-Diagnosis System based on The Driving information (자동차 주행정보를 활용한 스마트 자동차 자가 점검 시스템 설계 및 구현)

  • Kim, Min-Young;Jang, Jong-Wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.9
    • /
    • pp.2153-2159
    • /
    • 2013
  • In order to drive a vehicle safely, driver needs to check status of the car. Many moderns are having trouble to spare time to visit auto mechanic and have car mechanics to check their car other than their office hours. If the car status cannot be inspected regularly, it is likely to cause a big accident threatening the surroundings as well as driver's life. Inspection tool and system help driver to check their own vehicle status personally are required for preventing it. In this paper, it designed and realized system that records driving information based on changing data of vehicle (location and automotive internal data) and allows driver can check the vehicle status easily and further, driver can share the driving information with repair shop via the Internet to receive detailed inspection service for car status.