• 제목/요약/키워드: Self-Alignment/Navigation

검색결과 11건 처리시간 0.024초

레이저 관성항법장치에서 링레이저 자이로 디더 운동에 의한 가속도계 공진이 자체 정렬/항법 성능에 미치는 영향 분석 (Self-Alignment/Navigation Performance Analysis in the Accelerometer Resonance State Generated by Dither Motion of Ring Laser Gyroscope in Laser Inertial Navigation System)

  • 김천중;임경아;김선아
    • 한국군사과학기술학회지
    • /
    • 제24권6호
    • /
    • pp.577-590
    • /
    • 2021
  • In this paper, we theoretically analyzed the self-alignment/navigation performance in the accelerometer resonance state generated by dither motion of ring laser gyroscope in LINS and verified it through simulation. As a result of analysis, it is confirmed that the amplitude of the accelerometer measurement amplified in the accelerometer resonance state is decreased in the process of sampling per the navigation calculation period and that frequency is changed by the aliasing effect too. It was also analysed that the attitude error in self-alignment is determined by the amplitude/frequency of the accelerometer measurement, the gain of the self-alignment loop, and the velocity and position error in the navigation is determined by the amplitude/frequency/phase error of the accelerometer measurement. This analysis and simulation results show that the self-alignment and navigation performance is not be degraded only when the amplification factor of the accelerometer measurement in the accelerometer resonance state is 3 or less

A New Approach for SINS Stationary Self-alignment Based on IMU Measurement

  • Zhou, Jiangbin;Yuan, Jianping;Yue, Xiaokui
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2006년도 International Symposium on GPS/GNSS Vol.1
    • /
    • pp.355-359
    • /
    • 2006
  • For the poor observability of azimuth misalignment angle and east gyro drift rate of the traditional initial alignment, a bran-new SINS stationary fast self-alignment approach is proposed. By means of analyzing the characteristic of the strapdown inertial navigation system (SINS) stationary alignment seriously, the new approach takes full advantage of the specific force and angular velocity information given by inertial measurement unit (IMU) instead of the mechanization of SINS. Firstly, coarse alignment algorithm is presented. Secondly, a new fine alignment model for SINS stationary self-alignment is derived, and the observability of the model is analysed. Then, a modified Sage-Husa adaptive Kalman filter is introduced to estimate the misalignment angles. Finally, some computer simulation results illustrate the efficiency of the new approach and its advantages, such as higher alignment accuracy, shorter alignment time, more self-contained and less calculation.

  • PDF

가속도계 온도안정화 상태에서 고정이득방식 자체정렬의 성능개선 방법에 대한 연구 (A Study on Performance Improvement Method of Fixed-gain Self-alignment on Temperature Stabilizing State of Accelerometers)

  • 이인섭
    • 한국군사과학기술학회지
    • /
    • 제19권4호
    • /
    • pp.435-442
    • /
    • 2016
  • For inertial navigation systems, initial information such as position, velocity and attitude is required for navigation. Self-alignment is the process to determine initial attitude on stationary condition using inertial measurements such as accelerations and angular rates. The accuracy of self-alignment is determined by inertial sensor error. As soon as an inertial navigation system is powered on, the temperature of accelerometer rises rapidly until temperature stabilization. It causes acceleration error which is called temperature stabilizing error of accelerometer. Therefore, temperature stabilizing error degrades the alignment accuracy and also increases alignment time. This paper suggests a method to calculate azimuthal attitude using curve fitting of horizontal control angular rate in fixed-gain self-alignment. It is verified by simulation and experiment that the accuracy is improved and the alignment time is reduced using the proposed method under existence of the temperature stabilizing error.

관성항법장치 온도 안정화 상태에서의 초기정렬 성능분석 (Performance Analysis of Self-Alignment in the Temperature Stabilizing State of Inertial Navigation System)

  • 김천중;유준
    • 한국항공우주학회지
    • /
    • 제39권8호
    • /
    • pp.796-803
    • /
    • 2011
  • 정지 상태에서 관성항법장치를 구성하는 가속도계 및 자이로 측정치를 이용하여 초기 자세를 구하는 것을 초기정렬 혹은 자가정렬이라 한다. 초기정렬의 정밀도는 관성항법장치에 탑재되는 관성센서의 성능에 의하여 결정되며 수평축 자세는 수평축 가속도계, 수직축 자세는 E축 자이로 성능에 의해 결정된다. 그러므로 관성센서에서 발생된 불확실한 오차는 초기정렬의 정밀도를 저하시키는 주요원인이 된다. 논 논문에서는 관성센서의 불확실한 오차 중에서 관성항법장치에 전원이 인가되어 온도가 안정화 되는 상태에서의 관성센서 오차가 초기정렬 성능에 어떠한 영향을 미치는 가를 이론적으로 분석하고 시뮬레이션을 통하여 검증한 결과를 제시한다.

피치운동을 이용한 정밀 다위치 정렬기법 개발 (Development of the Precise Multi-Position Alignment Method using a Pitch Motion)

  • 이정신
    • 한국군사과학기술학회지
    • /
    • 제13권4호
    • /
    • pp.708-715
    • /
    • 2010
  • In Strapdown Inertial Navigation System, alignment accuracy is the most important factor to determine the performance of navigation. However by an existing self-alignment method, it takes a long time to acquire the alignment accuracy that we want. So, to attain the desired alignment accuracy in as little as $\bigcirc$ minutes, we have developed the precise multi-position alignment method. In this paper, it is proposed a inertial measurement matching transfer alignment method among alignment methods to minimize the alignment error in a short time. It is based on a mixed velocity-DCM matching method be suitable to the operating environment of vertical launching system. The compensation methods to reduce misalign error, especially azimuth angle error incurred by measurement time-delay error and body flexure error are analyzed and evaluated with simulation. This simulation results are finally confirmed by experimentations using FMS(Flight Motion Simulator) in Lab and the integration test to follow the fire control mission.

가상의 초기위치를 이용한 SDINS 폐루프 자체 정렬 알고리즘 (SDINS Closed Loop Self-Alignment Algorithm using Pseudo Initial Position)

  • 김태원
    • 한국항공우주학회지
    • /
    • 제45권6호
    • /
    • pp.463-472
    • /
    • 2017
  • 관성항법장치(Inertial Navigation System)는 항법 수행 전 동체 좌표계(body frame)와 항법 좌표계(navigation frame)사이의 좌표 변환 행렬(Direction Cosine Matrix: DCM)을 결정하여 초기자세를 구하는데 이 과정을 정렬(alignment)이라 한다. 정렬을 시작하기 위해서는 INS의 초기 위치 정보가 필요한데 해당 정보가 INS에 미리 입력되어 있지 않거나 당장에 초기위치를 모를 경우 이로 인해 INS에 전원이 인가된 후 정렬에 진입하기까지의 대기시간이 존재한다. 이러한 대기시간을 제거하기 위하여 본 논문에서는 INS 전원 인가 즉시 현재위치와 상이한 가상의 초기위치 값을 장입하여 스트랩다운 INS 정렬을 시작하고 추후에 정확한 위치를 INS에 입력하여 자세오차를 보상하는 정렬 알고리즘을 제시하였다. 항법 좌표계에서의 INS 센서 오차가 시간이 지남에 따라 자세오차에 미치는 영향성을 분석하여 가상의 초기위치 값 입력 시 발생하는 자세오차 만큼을 보상하는 폐루프 정렬 알고리즘의 성능을 검증하였다.

In-Flight Alignment Algorithm Using Uplinked Radar Data Including Time Delay

  • Park, Chan-Ju;Kim, Heun-Beik;Song, Gi-Won
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.56.1-56
    • /
    • 2001
  • Initial attitude error is one of the large error sources in the navigation errors of SDINS. And it is important to decide the initial attitude of SDINS. The method, like a self-alignment or a transfer alignment method, is required to a precise INS. If we do not have a precise INS, we should get large attitude error. After performing the initial alignment, a vehicle has the initial attitude error. Therefore, it results in navigation error due to the initial attitude error. But, if we use position information during flight, we could estimate and compensate a vehicle attitude error. So, we can maintain a precise attitude in spite of existing the initial attitude error. Using the uplinked position information from a land-based radar system, the new algorithm estimates the attitude of the SDINS during flight ...

  • PDF

In - Motion Alignment Method for a Low - cost IMU based GPS/INS System

  • Kim, Jeong-Won;Oh, Snag-Heon;Hwang, Dong-Hwan
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.990-994
    • /
    • 2003
  • When the low cost IMU is used, the result of the stationary self alignment is not suitable for navigation. In this paper, an in-motion alignment method is proposed to obtain an accurate initial attitude of a low cost IMU based GPS/INS integration system. To design Kalman filter for alignment, large heading error model is introduced. And then Kalman filter is designed to estimate initial attitude error as the indirect feedback filter. In order to assess performance of the alignment method, computer simulations are carried out. The simulation results show that initial attitude error rapidly reduces.

  • PDF

Adaptive Kalman Filter Design for an Alignment System with Unknown Sway Disturbance

  • Kim, Jong-Kwon;Woo, Gui-Aee;Cho, Kyeum-Rae
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제3권1호
    • /
    • pp.86-94
    • /
    • 2002
  • The initial alignment of inertial platform for navigation system was considered. An adaptive filtering technique is developed for the system with unknown and varying sway disturbance. It is assumed that the random sway motion is the second order ARMA(Auto Regressive Moving Average) model and performed parameter identification for unknown parameters. Designed adaptive filter contain both a Kalman filter and a self-tuning filter. This filtering system can automatically adapt to varying environmental conditions. To verify the robustness of the filtering system, the computer simulation was performed with unknown and varying sway disturbance.

Estimation Technique of Fixed Sensor Errors for SDINS Calibration

  • Lee, Tae-Gyoo;Sung, Chang-Ky
    • International Journal of Control, Automation, and Systems
    • /
    • 제2권4호
    • /
    • pp.536-541
    • /
    • 2004
  • It is important to estimate and calibrate sensor errors in maintaining the performance level of SDINS. In this study, an estimation technique of fixed sensor errors for SDINS calibration is discussed. First, the fixed errors of gyros and accelerometers, excluding gyro biases are estimated by the navigation information of SDINS in multi-position. The SDINS with RLG includes flexure errors. In this study, the gyros flexures are out of consideration, but the proposed procedure selects certain positions and rotations in order to minimize the influence of flexures. Secondly, the influences of random walks, flexures and orientation errors are verified via numerical simulations. Thirdly, applying the previous estimated errors to SDINS, the estimation of gyro biases is conducted via the additional control signals of close-loop self-alignment. Lastly, the experiments illustrate that the extracted calibration parameters are available for the improvement of SDINS.