• Title/Summary/Keyword: Self diffusion

Search Result 386, Processing Time 0.024 seconds

Prediction of Creep Deformation and Short Time Rupture Life of AZ31 Magnesium Alloy below 0.5Tm (0.5Tm 이하에서의 AZ31 마그네슘합금의 크리이프 변형과 단시간 파단수명예측)

  • Kang, D.M.;An, J.O.;Jeon, S.H.;Koo, Y.;Sim, S.B.
    • Transactions of Materials Processing
    • /
    • v.17 no.8
    • /
    • pp.558-563
    • /
    • 2008
  • The initial strain, the applied stress exponent, the activation energy, and rupture time in AZ31 magnesium alloy have been measured in order to predict the deformation mechanism and rupture life of creep over the temperature range of 423-443K. Creep tests were carried out under constant applied stress and temperature, and the lever type tester and automatic temperature controller was used for it, respectively. The experimental results showed that the applied stress exponent was about 9.74, and the activation energy for creep, 113.6KJ/mol was less than that of the self diffusion of Mg alloy including aluminum. From the results, the mechanism for creep deformation seems to be controlled by cross slip at the temperature range of 423-443K. Also the higher the applied stress and temperature, the higher the initial strain. And the rupture time for creep decreased as quadratic function with increasing the initial strain in double logarithmic axis.

The Creep Characteristics of Zirconium-base Alloy (Zirconium계 합금의 Creep특성)

  • Im, S.H.;Rhim, S.K.;Kim, K.H.;Choi, J.H.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.10 no.3
    • /
    • pp.198-208
    • /
    • 1997
  • The-steady-state creep mechanism and behavior of Zircaloy-4 used as cladding materials in PWR have been investigated in air environment over the temp, ranges from 600 to $645^{\circ}C$ and stress ranges from 4 to $7kg/mm^2$. The stress exponents for the creep deformation of this alloy, n were decreased 4.81, 4.71, 4.64, and 4.56 at 600, 615, 630 and $645^{\circ}C$, respectively; the stress exponents decreased with increasing the temperature and got closer to about 5. The apparent activation energies, Q, were 62.1, 60.0, 57.9 and 55.4 kcal/mole at stresses of 4, 5, 6, $7kg/mm^2$, respectively; the activation energies decreased with increasing the stress and were close to those of volume self diffusion of Zr in Zr-Sn-Fe-Cr system. In results, it can be considered that the creep deformation for Zircaloy-4 was controlled by the dislocation climb over the ranges of this experimental conditions. Larson-Miller parameter, P, for the crept specimens was obtained as P=(T+460)(logt,+23). The failure plane observed by SEM slightly showed up intergranular fracture at this experiment ranges. However, it was essentially dominated by the dimple phenomenon, which was a characteristics of the transgranular fracture.

  • PDF

A Study on Factors Affecting Intention to Continuous Use of O2O Service : Focused on Cinema Ticketing Systems (O2O서비스의 지속이용의도에 영향을 미치는 요인에 관한 연구 : 영화관 티켓 발권서비스를 중심으로)

  • Park, Soeun;Lee, Seonghye;Ji, Deabum;Choi, Jeongil
    • Journal of Information Technology Services
    • /
    • v.16 no.4
    • /
    • pp.197-212
    • /
    • 2017
  • This study aims to investigate factors affecting the intention of continuous use of O2O service by referring new media adoption theory and value-based acceptance model for movie ticketing services. For this study, a questionnaire survey was conducted for users of tickets ticketing service of the cinema online (including mobile) within the last 6 months. A total of 500 copies was collected and 404 copies were analyzed excluding 96 copies because of errors. As a result of the analysis, the ease of use and service ubiquity has a positive effect on perceived functional value and perceived emotional value, and usability has a positive effect on perceived functional value. Compatibility and trialability has a positive effect on both perceived functional value and emotional value. Previous experience has a positive effect on both perceived functional value and perceived emotional value, and inertia has negative effect on perceived functional value. Finally, the perceived emotional value has a positive effect on the intention to continuous use, but perceived functional value appeared to have no significant effect. This study shows a theoretical implication for new technology-based services such O2O. It was suggested to establish a practical marketing strategy and help to activate the O2O service field.

Preparation and Characterization of Crosslinked Sodium Alginate Membranes for the Dehydration of Organic Solvents

  • Goo, Hyung Seo;Kim, In Ho;Rhim, Ji Won;Golemme, Giovanni;Muzzalupo, Rita;Drioli, Enrico;Nam, SangYong
    • Korean Membrane Journal
    • /
    • v.6 no.1
    • /
    • pp.55-60
    • /
    • 2004
  • In recent years, an increasing interest in membrane technology has been observed in chemical and environmental industry. Membrane technology has advantages of low cost, energy saving and environmental clean technology comparing to conventional separation processes. Pervaporation is one of new advanced membrane technology applied for separation of azeotropic mixtures, aqueous organic mixtures, organic solvent and petrochemical mixtures. Sodium alginate composite membranes were prepared for the enhancement of long-term stability of pervaporation performance of water-ethanol mixture using pervaporation. Sodium alginate membranes were crosslinked with CaCl$_2$ and coated with polyelectrolyte chitosan to protect washing out of calcium ions from the polymer. The surface structures of PAN and hydrolysed PAN membrane were confirmed by ATR Fourier transform infrared (FT-IR). A field emission scanning electron microscopy (FE-SEM; Jeol 6340F) operated at 15 kV. Concentration profiles for Ca in the membrane surface and membrane cross-section were taken by an energy dispersive X-ray (EDX) analyser (Jeol) attached to the field emission scanning electron microscopy (Jeol 6340F). Pervaporation experiments were done with several operation run times to investigate long-term stability of the membranes.

Synthesis and Characterization of Sulfonated Poly(arylene ether) Polyimide Multiblock Copolymers for Proton Exchange Membranes

  • Lee, Hae-Seung;Roy Abhishek;Badami Anand S.;McGrath James E.
    • Macromolecular Research
    • /
    • v.15 no.2
    • /
    • pp.160-166
    • /
    • 2007
  • Novel multiblock copolymers, based on segmented sulfonated hydrophilic-hydrophobic blocks, were synthesized and investigated for their application as proton exchange membranes. A series of segmented sulfonated poly(arylene ether sulfone)-b-polyimide multiblock copolymers, with various block lengths, were synthesized via the coupling reaction between the terminal amine moieties on the hydrophilic blocks and naphthalene anhydride functionalized hydrophobic blocks. Successful imidization reactions required a mixed solvent system, comprised of NMP and m-cresol, in the presence of catalysts. Proton conductivity measurements revealed that the proton conductivity improved with increasing hydrophilic and hydrophobic block lengths. The morphological structure of the multiblock copolymers was investigated using tapping mode atomic force microscopy (TM-AFM). The AFM images of the copolymers demonstrated well-defined nanophase separated morphologies, with the changes in the block length having a pronounced effect on the phase separated morphologies of the system. The self diffusion coefficient of water, as measured by $^1H$ NMR, provided a better understanding of the transport process. Thus, the block copolymers showed higher values than Nafion, and comparable proton conductivities in liquid water, as well as under partially hydrated conditions at $80^{\circ}C$. The new materials are strong candidates for use in PEM systems.

Formation of Poly(ethylene glycol)-Poly($\varepsilon$-caprolactone) Nanoparticles via Nanoprecipitation

  • Lee, Jae-Sung;Hwang, Su-Jong;Lee, Doo-Sung;Kim, Sung-Chul;Kim, Duk-Joon
    • Macromolecular Research
    • /
    • v.17 no.2
    • /
    • pp.72-78
    • /
    • 2009
  • Size control of therapeutic carriers in drug delivery systems has become important due to its relevance to biodistribution in the human body and therapeutic efficacy. To understand the dependence of particle size on the formation condition during nanoprecipitation method, we prepared nanoparticles from biodegradable, amphiphilic block copolymers and investigated the particle size and structure of the resultant nanoparticles according to various process parameters. We synthesized monomethoxy poly(ethylene glycol)-poly($\varepsilon$-caprolactone) block copolymer, MPEG-PCL, with different MPEG/PCL ratios via ring opening polymerization initiated from the hydroxyl end group of MPEG. Using various formulations with systematic change of the block ratio of MPEG and PCL, solvent choice, and concentration of organic phase, MPEG-PCL nanoparticles were prepared through nanoprecipitation technique. The results indicated that (i) the nanoparticles have a dual structure with an MPEG shell and a PCL core, originating from self-assembly of MPEG-PCL copolymer in aqueous condition, and (ii) the size of nanoparticles is dependent upon two sequential processes: diffusion between the organic and aqueous phases and solidification of the polymer.

Industry safety characteristic of Prismatic EDLCs (각형 전기이중층 커패시터의 산업 안전성)

  • 김경민;장인영;강안수
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2004.05a
    • /
    • pp.247-257
    • /
    • 2004
  • Electrodes were fabricated based on activated carbon powder BP-20, conducting agent such as Super P, vapor grown carbon fiber (VGCF) and acetylene black (AB), and the mixed binders of flexible poly(vinylidenefluoridehexafluoropropylene) [P(VdF-co-HFP)] and cross linking dispersion agent of polyvinylpyrrolidone (PVP) to increase mechanical strength. According to impedance measurement of the electrode with the addition of conducting agent, we found that it was possible to charge rapidly by the fast steady-state current convergence due to low equivalent series resistance (AC-ESR, fast charge transfer rate at interface between electrode and electrolyte and low RC time constant. The self-discharge of unit cell showed that diffusion process was controlled by the ion concentration difference of initial electrolyte due to the characteristics of Electric Double Layer Capacitor (EDLC) charged by ion adsorption in the beginning, but this by current leakage through the double-layer at the electrode/electrolyte interface had a minor effect and voltages of curves were remained constant regardless of electrode material. We found that the 2.3V/230F grade EDLC would be applied to industrial safety usage such as uninterrupted power supply (UPS) because of the constant DC-ESR by IR drop regardless of discharge current.

  • PDF

A study on Ar/CF4 Magnetized Inductively Coupled Plasma Using Fluid Simulation (유체시뮬레이션을 통한 Ar/CF4 자화유도결합 플라즈마의 특성 연구)

  • Kim, Yun-Gi;Son, Eui-Jeong;Wi, Sung-Suk;Kim, Dong-Hyun;Lee, Ho-Jun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.4
    • /
    • pp.560-566
    • /
    • 2015
  • The self-consistent simulation based on the drift-diffusion approximation with anisotropic transport coefficients was performed. The RHCP-wave propagation was observed in MICP and this wave was refracted toward the high-density region. The calculated impedance seen from the antenna terminal shows that resistance component of MICP is a higher than that of ordinary ICP. Because of a higher resistance, the power transfer efficiency was improved to 95%. This property is practically important for large-size, low-pressure plasma sources because high resistance corresponds to high power-transfer efficiency and stable impedance matching characteristics.

Fabrication of coated conductor stacked multi-filamentary wire (적층형 초전도 다심 선재 제조)

  • Yun, K.S.;Ha, H.S.;Oh, S.S.;Moon, S.H.;Kim, C.J.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.14 no.1
    • /
    • pp.4-7
    • /
    • 2012
  • Coated conductors have been developed to increase piece length and critical current for electric power applications. Otherwise, Many efforts were carried out to reduce AC loss of coated conductor for AC applications. Twisting and cabling processes are effective to reduce AC loss but, these processes can not be applied for tape shaped coated conductor. It is inevitable to have thin rectangular shape because coated conductor is fabricated by thin film deposition process on metal substrate. In this study, round shape superconducting wire was first fabricated using coated conductors. First of all, Ag coated conductor was used. coated conductor was slitted to several wires with narrow width below 1mm. 12ea slitted wires were parallel stacked on top of another until making up the square cross-section. The bundle of coated conductors was heat treated to stick on each other by diffusion bonding and then copper plated to make round shape wire. Critical current of round wire was measured 185A at 77K, self field.

Reentrainment of Carbon Soot Particles in a Corona Discharge Reactor (코로나 방전 반응기에서 Carbon Soot 입자의 재비산)

  • Lee, Jae-Bok;Hwang, Jung-Ho;Bae, Gwi-Nam
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.7
    • /
    • pp.1002-1009
    • /
    • 2000
  • Among the various types of diesel after-treatment device, the corona discharge reactor may be considered as a powerful process for trapping submicron particles. But after precipitation on the electrodes occurs, the reentrainment of particles is severe and often causes low or negative precipitation efficiency. Experiments were performed to investigate the effect of an applied voltage on the reentrainment of soot particles from the electrodes. A co-annular laminar diffusion flame burner was used as the soot generator. When a highly negative voltage was applied, exfoliation of the deposited soot particles and an increase in concentration of particles smaller than approximately 150 nm were observed. Turbulence induced from the negative tuft corona and sputtering caused particle reentrainment from the corona wire and from plates as well. Under soot laden combustion gas, a streamer corona often occurred in the wire-cylinder reactor. Because of its transient nature, streamer corona violently increased the concentration of reentrained particles and CO gas.