• Title/Summary/Keyword: Self Tuning Controller

Search Result 280, Processing Time 0.024 seconds

Fuzzy logic control of a planar parallel manipulator using multi learning algorithm (다중 학습 알고리듬을 이용한 평면형 병렬 매니퓰레이터의 Fuzzy 논리 제어)

  • Song, Nak-Yun;Cho, Whang
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.8
    • /
    • pp.914-922
    • /
    • 1999
  • A study on the improvement of tracking performance of a 3 DOF planar parallel manipulator is performed. A class of adaptive tracking control sheme is designed using self tuning adaptive fuzzy logic control theory. This control sheme is composed of three classical PD controller and a multi learning type self tuning adaptive fuzzy logic controller set. PD controller is tuned roughly by manual setting a priori and fuzzy logic controller is tuned precisely by the gradient descent method for a global solution during run-time, so the proposed control scheme is tuned more rapidly and precisely than the single learning type self tuning adaptive fuzzy logic control sheme for a local solution. The control performance of the proposed algorithm is verified through experiments.

  • PDF

Improved Neural Network-Based Self-Tuning fuzzy PID Controller for Induction Motor Speed Control (유도전동기 속도제어를 위한 개선된 신경회로망 기반 자기동조 퍼지 PID 제어기 설계)

  • 김상민;한우용;이창구
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.51 no.12
    • /
    • pp.691-696
    • /
    • 2002
  • This paper presents a neural network based self-tuning fuzzy PID control scheme with variable learning rate for induction motor speed control. When induction motor is continuously used long time, its electrical and mechanical Parameters will change, which degrade the Performance of PID controller considerably. This Paper re-analyzes the fuzzy controller as conventional PID controller structure, introduces a single neuron with a back-propagation learning algorithm to tune the control parameters, and proposes a variable learning rate to improve the control performance. Proposed scheme is simple in structure and computational burden is small. The simulation using Matlab/Simulink and the experiment using dSPACE(DS1102) board are performed to verify the effectiveness of the proposed scheme.

Neural network PI parameter Self-tuning Simulator for Permanent Magnet Synchronous Motor operation (영구자석 동기전동기 구동을 위한 신경회로망 PI 파라미터 자기 동조 시뮬레이터)

  • Bae, Eun-Kyeong;Kwon, Jung-Dong;Jeon, Kee-Young;Park, Choon-Woo;Oh, Bong-Hwan;Jeong, Choon-Byeong;Lee, Hoon-Goo;Han, Kyung-Hee
    • Proceedings of the KIPE Conference
    • /
    • 2007.07a
    • /
    • pp.394-396
    • /
    • 2007
  • In this paper proposed to neural network PI self-tuning direct controller using Error back propagation algorithm. Proposed controller applies to speed controller and current controller. Also, this built up the interface environment to drive it simply and exactly in any kind of reference, environment fluent and parameter transaction of PMSM. Neural network PI self-tuning simulator using Visual C++ and Matlab Simulation is organized to construct this environment, Built up interface has it's own purpose that even the user who don't have the accurate knowledge of Neural network can embody operation characteristic rapidly and easily.

  • PDF

MPPT Control of Photovoltaic System using Neural Network PI Self Tuning (신경회로망 PI자기동조를 이용한 PV발전시스템의 MPPT제어)

  • Lee, J.H.;Kim, E.G.;Kim, D.G.;Lee, S.C.;Oh, B.H.;Lee, H.G.;Kim, Y.J.;Han, K.H.
    • Proceedings of the KIEE Conference
    • /
    • 2005.10a
    • /
    • pp.155-157
    • /
    • 2005
  • This paper shows how to design a MPPT control of PV system using neural network PI self tuning. The conventional self-tuning methods have the voltage control problem of nonlinear PV system which can't adapt against any kinds of noise or operation circumstances. In this paper, supposed to solve these problem to PI parameters controller algorithm using ANN. In the proposed algorithm, the parameters of the controller were adjusted to reduce by on-line system the error of the output voltage of DC-DC chopper. In this process, EBPA NN was constituted to an output error value of a DC-DC chopper and conspired an input and output. The performance of the self-tuning controller is compared with that of the PI controller tuned by conventional method. The effectiveness of the proposed control method is verified thought the Matlab Simulink.

  • PDF

HBPI Controller of Induction Motor using Fuzzy Adaptive Mechanism (퍼지 적응 메카니즘을 이용한 유도전동기의 HBPI 제어기)

  • Nam Su-Myung;Lee Hong-Gyun;Chung Dong-Hwa
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.54 no.8
    • /
    • pp.395-401
    • /
    • 2005
  • This paper presents Hybrid PI(HBPI) controller of induction motor drive using fuzzy control. In general, PI controllers used in computer numerically controlled machines process fixed gain. They may perform well under some operating conditions, but not all. To increase the robustness of fixed gain PI controller, HBPI controller proposes a new method based self tuning PI controller. HBPI controller is developed to minimize overshoot and settling time following sudden parameter changes such as speed, load torque, inertia, rotor resistance and self inductance. The results on a speed controller of induction motor are presented to show the effectiveness of the proposed gam tuner. And this controller is better than the fixed gains one in terms of robustness, even under great variations of operating conditions and load disturbance.

Design of a Self-tuning PID Controller for Over-damped Systems Using Neural Networks and Genetic Algorithms (신경회로망과 유전알고리즘을 이용한 과감쇠 시스템용 자기동조 PID 제어기의 설계)

  • 진강규;유성호;손영득
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.27 no.1
    • /
    • pp.24-32
    • /
    • 2003
  • The PID controller has been widely used in industrial applications due to its simple structure and robustness. Even if it is initially well tuned, the PID controller must be retuned to maintain acceptable performance when there are system parameter changes due to the change of operation conditions. In this paper, a self-tuning control scheme which comprises a parameter estimator, a NN-based rule emulator and a PID controller is proposed, which can cope with changing environments. This method involves combining neural networks and real-coded genetic algorithms(RCGAs) with conventional approaches to provide a stable and satisfactory response. A RCGA-based parameter estimation method is first described to obtain the first-order with time delay model from over-damped high-order systems. Then, a set of optimum PID parameters are calculated based on the estimated model such that they cover the entire spectrum of system operations and an optimum tuning rule is trained with a BP-based neural network. A set of simulation works on systems with time delay are carried out to demonstrate the effectiveness of the proposed method.

Self-tuning control with improved transient state (초기과도 상태를 개선한 자기 동조 제어 방식)

  • 김운성;배한경;허경무
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.376-381
    • /
    • 1992
  • In this thesis, a self-tuning control method based on Variable Structure System technique for tracking control of Direct-Drive motor is presented. The self-tuning control could not make the tracking error zero in the transient period. This tracking error may be due to disturbances or the error in parameter identification. To overcome this problem, a self-tuning control method based on discrete time VSS technique is presented. The STC based on VSS technique gives good tracking performance of the reference signal in the transient period. The proposed controller is robust to parameter errors and disturbances. The performance of the proposed controller is compared with that of simple STC through digital computer simulation.

  • PDF

Current Control of Switched Reluctance Motor Using Self-tuning Fuzzy Controller (자기동조 퍼지 제어기를 이용한 스위치드 릴럭턴스 모터의 전류제어)

  • Lee, Young-Soo;Kim, Jaehyuck;Oh, Hun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.3
    • /
    • pp.473-479
    • /
    • 2016
  • This paper describes an accurate and stable current control method of switched reluctance motors(SRMs), which have recently attracted considerable wide attention owing to their favorable features, such as high performance, high durability, structural simplicity, low cost, etc. In most cases, the PI controllers(PICC) have been used mostly for the current control of electric motors because their algorithm and selection of controller gain are relatively simpler compared to other controllers. On the other hand, the PI controller requires an adjustment of the controller gains for each operating point when nonlinear system parameters change rapidly. This paper presents a stable current control method of an SRM using self-tuning fuzzy current controller(STFCC) under nonlinear parameter variation. The performance of the considered method is validated via a dynamic simulation of the current controlled SRM drive using Matlab/Simulink program.

Load Frequency Control using Parameter Self-Tuning Fuzzy Controller (파라미터 자기조정 퍼지제어기를 이용한 부하주파수제어)

  • 이준탁;정동일;안병철;주석민;정형환
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.7 no.2
    • /
    • pp.52-65
    • /
    • 1997
  • This paper presents a design technique of self tuning fuzzy controller for load frequency control of power system. The proposed parameter self tuning algorithm of fuzzy controller is based on the gradient method using four direction vectors which make error between inference values of fuzzy controller and output values of the specially selected optimal controller reduce steepestly. Using input-output data pair obtained from optimal controller, the parameters in antecedent part and in consequent part of fuzzy inference rules are learned and tuned automatically using the proposed gradient method. The related simulation results show that the proposed fuzzy controller is more powerful than the conventional ones for reductions of undershoot and steady-state load frequency deviation and for minimization of settling time.

  • PDF

Design of a direct multivariable neuro-generalised minimum variance self-tuning controller (직접 다변수 뉴로 일반화 최소분산 자기동조 제어기의 설계)

  • 조원철;이인수
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.41 no.4
    • /
    • pp.21-28
    • /
    • 2004
  • This paper presents a direct multivariable self-tuning controller using neural network which adapts to the changing parameters of the higher order multivariable nonlinear system with nonminimum phase behavior, mutual interactions and time delays. The nonlinearities are assumed to be globally bounded, and a multivariable nonlinear system is divided linear part and nonlinear part. The neural network is used to estimate the controller parameters, and the control output is obtained through estimated controller parameter. In order to demonstrate the effectiveness of the proposed algorithm the computer simulation is done to adapt the multivariable nonlinear nonminimm phase system with time delays and changed system parameter after a constant time. The proposed method compared with direct multivariable adaptive controller using neural network.