• Title/Summary/Keyword: Self Organizing Map(SOM)

Search Result 235, Processing Time 0.024 seconds

Segmentation of the Internet Stock Trading Market Using Self Organizing Map (SOM을 이용한 인터넷 주식거래시장의 시장세분화 전략수립에 관한 연구)

  • 이건창;정남호
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.27 no.3
    • /
    • pp.75-92
    • /
    • 2002
  • This paper is concerned with proposing a new market strategy for the segmented markets of the Internet stock trading. Many companies are providing various services for customers. However, the internet stock trading market is glowing rapidly absorbing a wide variety of customers showing different tastes and demographic information, so that it is necessary for us to investigate specific strategy for the segmented markets. General strategy so far in the Internet stock trading market has been to lower transaction fee according to the market trend. As the advent of rapidly enlarging market, however, more specific strategies need to be suggested for the segmented markets. In this respect, this paper applied a self-organizing map (SOM) to 83 questionnaire data collected from the Internet stock trading market in Korea, and obtained meaningful results.

A Method for Producing Animation as a Series of Backward-Projected Patterns in a Self-Organizing Map

  • Wakuya, Hiroshi;Takahama, Eishi;Itoh, Hideaki;Fukumoto, Hisao;Furukawa, Tatsuya
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2012.05a
    • /
    • pp.195-196
    • /
    • 2012
  • A self-organizing map (SOM) can be seen as an analytical tool to discover some underlying rules in the given data set. Based on such distinctive nature called topology-preserving projection, a new method for generating intermediate patterns was proposed. Then, following to this method, producing animation as a series of backward-projected patterns just like a flip book is tried in this article.

  • PDF

Analysis of Risk Factors for the Importance in Vietnam's Public-Private Partnership Project Using SOM(Self-organizing map) (SOM(Self-organizing map)을 활용한 베트남 민관협력사업 리스크 요인 중요도 분석)

  • Yun, Geehyei;Kim, Seungho;Kim, Sangyong
    • Journal of the Korea Institute of Building Construction
    • /
    • v.20 no.4
    • /
    • pp.347-355
    • /
    • 2020
  • The economic growth rate and the urban population of the Vietnam are steadily increasing. As a result, the size of the Vietnam's construction market for infrastructure development is expected to increase. However, Vietnam is adopting PPP(Public-Private Partnership) to solve this problem because the government lacks the financial and administrative capacity for infrastructure development. PPP is a business that lasts more than 10 years, so risk management is very important because it can be a long term damage in case of business failure. This study proposes a self-organization map (SOM) for analyzing the impact of risk factors and determining the priority of them. SOM is a visualization analysis method that analyzes the inherent correlation through the color pattern of each factor.

Use of Minimal Spanning Trees on Self-Organizing Maps (자기조직도에서 최소생성나무의 활용)

  • Jang, Yoo-Jin;Huh, Myung-Hoe;Park, Mi-Ra
    • The Korean Journal of Applied Statistics
    • /
    • v.22 no.2
    • /
    • pp.415-424
    • /
    • 2009
  • As one of the unsupervised learning neural network methods, self-organizing maps(SOM) are applied to various fields. It reduces the dimension of multidimensional data by representing observations on the low dimensional manifold. On the other hand, the minimal spanning tree(MST) of a graph that achieves the most economic subset of edges connecting all components by a single open loop. In this study, we apply the MST technique to SOM with subnodes. We propose SOM's with embedded MST and a distance measure for optimum choice of the size and shape of the map. We demonstrate the method with Fisher's Iris data and a real gene expression data. Simulated data sets are also analyzed to check the validity of the proposed method.

A Recommender System Model Combining Collaborative filtering and SOM Neural Networks (협동적 필터링과 SOM 신경망을 결합한 추천시스템 모델)

  • Lee, Mi-Hee;Woo, Young-Tae
    • Journal of Korea Multimedia Society
    • /
    • v.11 no.9
    • /
    • pp.1213-1226
    • /
    • 2008
  • A recommender system supports people in making recommendations finding a set of people who are likely to provide good recommendations for a given person, or deriving recommendations from implicit behavior such as browsing activity, buying patterns, and time on task. We proposed new recommender system which combined SOM(Self-Organizing Map) neural networks with the Collaborative filtering which most recommender systems hat applied First, we segmented user groups according to demographic characteristics and then we trained the SOM with people's preferences as ito inputs. Finally we applied the classic collaborative filtering to the clustering with similarity in which an recommendation seeker belonged to, and therefore we didn't have to apply the collaborative filtering to the whose data set. Experiments were run for EachMovies data set. The results indicated that the predictive accuracy was increased in terms of MAE(Mean-Absolute-Error).

  • PDF

The Effectiveness of High-level Text Features in SOM-based Web Image Clustering (SOM 기반 웹 이미지 분류에서 고수준 텍스트 특징들의 효과)

  • Cho Soo-Sun
    • The KIPS Transactions:PartB
    • /
    • v.13B no.2 s.105
    • /
    • pp.121-126
    • /
    • 2006
  • In this paper, we propose an approach to increase the power of clustering Web images by using high-level semantic features from text information relevant to Web images as well as low-level visual features of image itself. These high-level text features can be obtained from image URLs and file names, page titles, hyperlinks, and surrounding text. As a clustering engine, self-organizing map (SOM) proposed by Kohonen is used. In the SOM-based clustering using high-level text features and low-level visual features, the 200 images from 10 categories are divided in some suitable clusters effectively. For the evaluation of clustering powers, we propose simple but novel measures indicating the degrees of scattering images from the same category, and degrees of accumulation of the same category images. From the experiment results, we find that the high-level text features are more useful in SOM-based Web image clustering.

Flood Stage Forecasting using Class Segregation Method of Time Series Data (시계열자료의 계층분리기법을 이용한 하천유역의 홍수위 예측)

  • Kim, Sung-Weon
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.669-673
    • /
    • 2008
  • In this study, the new methodology which combines Kohonen self-organizing map(KSOM) neural networks model and the conventional neural networks models such as feedforward neural networks model and generalized neural networks model is introduced to forecast flood stage in Nakdong river, Republic of Korea. It is possible to train without output data in KSOM neural networks model. KSOM neural networks model is used to classify the input data before it combines with the conventional neural networks model. Four types of models such as SOM-FFNNM-BP, SOM-GRNNM-GA, FFNNM-BP, and GRNNM-GA are used to train and test performances respectively. From the statistical analysis for training and testing performances, SOM-GRNNM-GA shows the best results compared with the other models such as SOM-FFNNM-BP, FFNNM-BP, and GRNNM-GA and FFNNM-BP shows vice-versa. From this study, we can suggest the new methodology to forecast flood stage and construct flood warning system in river basin.

  • PDF

Application of Principal Component Analysis and Self-organizing Map to the Analysis of 2D Fluorescence Spectra and the Monitoring of Fermentation Processes

  • Rhee, Jong-Il;Kang, Tae-Hyoung;Lee, Kum-Il;Sohn, Ok-Jae;Kim, Sun-Yong;Chung, Sang-Wook
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.11 no.5
    • /
    • pp.432-441
    • /
    • 2006
  • 2D fluorescence sensors produce a great deal of spectral data during fermentation processes, which can be analyzed using a variety of statistical techniques. Principal component analysis (PCA) and a self-organizing map (SOM) were used to analyze these 2D fluorescence spectra and to extract useful information from them. PCA resulted in scores and loadings that were visualized in the score-loading plots and used to monitor various fermentation processes with recombinant Escherichia coli and Saccharomyces cerevisiae. The SOM was found to be a useful and interpretative method of classifying the entire gamut of 2D fluorescence spectra and of selecting some significant combinations of excitation and emission wavelengths. The results, including the normalized weights and variances, indicated that the SOM network is capable of being used to interpret the fermentation processes monitored by a 2D fluorescence sensor.

Development of an Application for Mobile Devices to Analyze Data Set by a Self-Organizing Map : A Case Study on Saga Prefectural Sightseeing Information

  • Wakuya, Hiroshi;Horinouchi, Yu;Itoh, Hideaki
    • International Journal of Contents
    • /
    • v.9 no.3
    • /
    • pp.15-18
    • /
    • 2013
  • In the preceding studies, an analysis of Saga Prefectural sightseeing information by a Self-Organizing Map (SOM) has been tried. And recent development on Information and Communication Technology (ICT) will help us to access any results via the mobile devices easily. This is why the mobile devices, e.g., smartphones and tablet computers, have an operating system installed, and we can improve their functions by downloading any applications on the Web. Then, in order to realize this basic idea, development of an application for the mobile devices is investigated through some computer simulations on the standard desktop PC in this paper. As a result, it is found that i) a developed feature map is useful to identify some candidate topics, ii) a touchscreen is suitable to show the feature map, and iii) arrangement of the feature map can be modified based on our interests. Then, it is concluded that the proposed idea seems to be applicable, even though further consideration is required to brush it up.

A METHOD OF IMAGE DATA RETRIEVAL BASED ON SELF-ORGANIZING MAPS

  • Lee, Mal-Rey;Oh, Jong-Chul
    • Journal of applied mathematics & informatics
    • /
    • v.9 no.2
    • /
    • pp.793-806
    • /
    • 2002
  • Feature-based similarity retrieval become an important research issue in image database systems. The features of image data are useful to discrimination of images. In this paper, we propose the highspeed k-Nearest Neighbor search algorithm based on Self-Organizing Maps. Self-Organizing Maps (SOM) provides a mapping from high dimensional feature vectors onto a two-dimensional space. The mapping preserves the topology of the feature vectors. The map is called topological feature map. A topological feature map preserves the mutual relations (similarity) in feature spaces of input data. and clusters mutually similar feature vectors in a neighboring nodes. Each node of the topological feature map holds a node vector and similar images that is closest to each node vector. In topological feature map, there are empty nodes in which no image is classified. We experiment on the performance of our algorithm using color feature vectors extracted from images. Promising results have been obtained in experiments.