• 제목/요약/키워드: Self Organizing Feature Map

검색결과 152건 처리시간 0.035초

모듈화된 신경망을 이용한 한국어 중의성 해결 시스템 (Word sense disambiguation using modular neural networks)

  • 한태식;송만석
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 1995년도 제7회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.39-42
    • /
    • 1995
  • 문장 안에서 한 단어가 가지는 올바른 의미를 얻기 위해 모듈화된 신경망을 이용하였다. 앞부분에 놓인 신경망은 코호넨 신경망으로 사용자의 지도가 개입되지 않은 상태로 자율학습(Unsupervised learning)이 이루어지고, 뒤에 놓인 신경망은 앞에서 결과로 얻은 2차원의 자기 조직화 형상지도(Self-organizing feature map)를 바탕으로 역전파 신경망을 이용한 지도학습(Supervised learning)을 하게 하였다. 입력 자료는 구문분석된 문장의 조사 정보를 활용하여 입력 위치를 정해준 명사의 의미표지와 동사의 의미표지를 사용하였다. 중의성이 있는 단어를 가지는 문장은 중의성의 가지수 만큼 테스트 입력 자료가 되어 신경망을 통과하여 의미를 결정하도록 한다.

  • PDF

PSD 및 역전파 알고리즘를 이용한 AMI 로봇의 제어 시스템 설계 (Design of AMI Robot Control System Using PSD and Back Propagation Algorithm)

  • 이재욱;서운학;김휘동;이희섭;한성현
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2002년도 춘계학술대회 논문집
    • /
    • pp.393-398
    • /
    • 2002
  • Neural networks are used in the framework of sensorbased tracking control of robot manipulators. They learn by practice movements the relationship between PSD (an analog Position Sensitive Detector) sensor readings for target positions and the joint commands to reach them. Using this configuration, the system can track or follow a moving or stationary object in real time. forthermore, an efficient neural network architecture has been developed for real time learning. This network uses multiple sets of simple backpropagation networks one of which is selected according to which division (corresponding to a cluster of the self-organizing feature map) in data space the current input data belongs to. This lends itself to a very training and processing implementation required for real time control.

  • PDF

Back Propagation 알고리즘을 이용한 산업용 로봇의 견실 제어 (Robust Control of Industrial Robot Based on Back Propagation Algorithm)

  • 윤주식;이희섭;윤대식;한성현
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2004년도 춘계학술대회 논문집
    • /
    • pp.253-257
    • /
    • 2004
  • Neural networks are works are used in the framework of sensor based tracking control of robot manipulators. They learn by practice movements the relationship between PSD(an analog Position Sensitive Detector) sensor readings for target positions and the joint commands to reach them. Using this configuration, the system can track or follow a moving or stationary object in real time. Furthermore, an efficient neural network architecture has been developed for real time learning. This network uses multiple sets of simple back propagation networks one of which is selected according to which division(corresponding to a cluster of the self-organizing feature map) in data space the current input data belongs to. This lends itself to a very training and processing implementation required for real time control.

  • PDF

신경회로망과 위치 검출장치를 사용한 로보트 추적 제어기의 구현 (A neural network based real-time robot tracking controller using position sensitive detectors)

  • 박형권;오세영;김성권
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1993년도 한국자동제어학술회의논문집(국내학술편); Seoul National University, Seoul; 20-22 Oct. 1993
    • /
    • pp.660-665
    • /
    • 1993
  • Neural networks are used in the framework of sensorbased tracking control of robot manipulators. They learn by practice movements the relationship between PSD ( an analog Position Sensitive Detector) sensor readings for target positions and the joint commands to reach them. Using this configuration, the system can track or follow a moving or stationary object in real time. Furthermore, an efficient neural network architecture has been developed for real time learning. This network uses multiple sets of simple backpropagation networks one of which is selected according to which division (corresponding to a cluster of the self-organizing feature map) in data space the current input data belongs to. This lends itself to a very fast training and processing implementation required for real time control.

  • PDF

PSD 및 역전파 알고리즘를 이용한 AM1 로봇의 제어 시스템 설계 (Design of AM1 Robot Control System Using PSD and Back Propagation Algorithm)

  • 이재욱;서운학;이종붕;이희섭;한성현
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2001년도 춘계학술대회 논문집(한국공작기계학회)
    • /
    • pp.239-243
    • /
    • 2001
  • Neural networks are used in the framework of sensorbased tracking control of robot manipulators. They learn by practice movements the relationship between PSD (an analog Position Sensitive Detector) sensor readings for target positions and the joint commands to reach them. Using this configuration, the system can track or follow a moving or stationary object in real time. Furthermore, an efficient neural network architecture has been developed for real time learning. This network uses multiple sets of simple backpropagation networks one of which is selected according to which division (corresponding to a cluster of the self-organizing feature map) in data space the current input data belongs to. This lends itself to a very training and processing implementation required for real time control.

  • PDF

신경망과 실험계획법을 이용한 절삭력 예측 (Prediction of Cutting Force using Neural Network and Design of Experiments)

  • 이영문;최봉환;송태성;김선일;이동식
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 추계학술대회 논문집
    • /
    • pp.1032-1035
    • /
    • 1997
  • The purpose of this paper is to reduce the number of cutting tests and to predict the main cutting force and the specific cutting energy. By using the SOFM neural network, the most suitable cutting test conditions has been found. As a result, the number of cutting tests has been reduced to one-third. And by using MLP neural network and regression analysis, the main cutting force and specific cutting energy has been predicted. Predicted values of main cutting force and specific cutting energy are well concide with the measured ones.

  • PDF

회전기계의 이상진단을 위한 진동신호 분류시스템에 관한 연구 (Classification System using Vibration Signal for Diagnosing Rotating Machinery)

  • 임동수;안경룡;양보석
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2000년도 춘계학술대회논문집
    • /
    • pp.1133-1138
    • /
    • 2000
  • This paper describes a signal recognition method for diagnosing the rotating machinery using wavelet-aided Self-Organizing Feature Map(SOFM). The SOFM specialized from neural network is a new and effective algorithm for interpreting large and complex data sets. It converts high-dimensional data items into simple order relationships with low dimension. Additionally the Learning Vector Quantization(LVQ) is used for reducing the error from SOFM. Multi-resolution and wavelet transform are used to extract salient features from the primary vibration signals. Since it decomposes the raw timebase signal into two respective parts in the time space and frequency domain, it does not lose either information unlike Fourier transform. This paper is focused on the development of advanced signal classifier in order to automatize vibration signal pattern recognition. This method is verified by the experiment and several abnormal vibrations such as unbalance and rubbing are classified with high flexibility and reliability by the proposed methods.

  • PDF

역전파 알고리즘 및 PSD를 이용한 로봇의 결실제어 (Robust control of industrial robot using back propagation algorithm and PSD)

  • 이재욱
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2000년도 춘계학술대회논문집 - 한국공작기계학회
    • /
    • pp.171-175
    • /
    • 2000
  • Neural networks are in the framework of sensorbased tracking control of robot manipulators. They learn by practice movements the relationship between PSD (an analog Position Sensitive Detector) sensor readings for target positions and the joint commands to reach them. Using this configuration, the system can track or follow a moving or stationary object in real time. Furthermore, an efficient neural network architecture has been developed for real time learning. This network uses multiple sets of simple backpropagation networks one of which is selected according to which division (corresponding to a cluster of the self-organizing feature map) in data space the current input data belongs to. This lends itself to a very training and processing implementation required for real time control.

  • PDF

뒤틀림 현상이 없는 FSOM 학습 알고리즘 (Improved Fast SOM learning algorithm without cross-over)

  • 정선정;정순호
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2001년도 춘계학술발표논문집 (하)
    • /
    • pp.1029-1032
    • /
    • 2001
  • 자기구성 특징지도(Self-Organizing feature Map : SOM) 및 $L^*$ 등의 자가 학습 신경망의 알고리즘들은 학습 결과 중에 바람직하지 못한 뒤틀림 현상(cross-over)을 생성하게 되므로 재학습으로 인한 전반적인 학습 시간의 지연을 초래한다. 이 논문에서는 비교적 학습 속도가 빠른 $L^*$의 점증적 학습 구조를 기본으로 하여 뒤틀림 현상 방지를 목적으로 초기 학습 단계에서 학습 가중치들의 노드들을 재조정하는 개선된 알고리즘을 제안한다. 이러한 알고리즘의 실험 결과는 모두 정상적인 학습 결과를 보이고 학습의 시행 착오적인 재실행이 없으므로 전반적인 학습 속도는 기존의 알고리즘보다 빠르게 됨을 보인다.

  • PDF

NCEP 일기도 데이터 클러스터링을 위한 특징 벡터 추출 (Feature vector extraction for NCEP weather data clustering)

  • 이기범;이성환;정창성;황치정
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2001년도 봄 학술발표논문집 Vol.28 No.1 (B)
    • /
    • pp.583-585
    • /
    • 2001
  • 방대한 양의 격자점 데이터 및 일기도 관련 데이터를 효율적으로 저장 및 검색 하기위해서는 데이터들의 유형을 찾아 서로 유형이 비슷한 데이터를 하나의 클러스터로 연관지어 놓으면 효율적인 저장과 검색을 할 수 있다. 클러스터링에서 데이터들의 어떤 특징 벡터를 추출하는가가 클러스터링의 결과에 가장 중요한 영향을 끼친다. 본 논문에서는 격자점, 기압값 데이터로부터 일기도의 특징을 표현할 수 있는 벡터로 변환 한반도도 중심의 8방향에 대한 고/저기압의 분포와 동아시아 지역을 24영역으로 나누어 각 영역별로 고/저기압의 분포 정보를 특징벡터로 추출하여 클러스터링하였다. 클러스터팅 알고리즘으로는 unsupervised mode인 SOM(Self Organizing Map) 기법을 사용하였다.

  • PDF