• Title/Summary/Keyword: Selective laser melting (SLM)

Search Result 45, Processing Time 0.029 seconds

Mechanical Properties of 316L manufactured by Selective Laser Melting (SLM) 3D printing (Selective Laser Melting (SLM) 방식 3D Printing으로 제조한 스테인레스 316L 기계적 물성 분석)

  • Park, Sun Hong;Jang, Jin Young;Noh, Yong Oh;Bae, Byung Hyun;Rhee, Byong Ho;Eo, Du Rim;Cho, Jung Wook
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.872-876
    • /
    • 2017
  • Laser Based 3D Printing is an recently advance manufacturing technology for making complex shape comopnent such as automobile and aerospace. So in this article, stainless steel 316L was manufactured by Selective Laser Melting (SLM) and Laser Melting Deposition (LMD) method. SLM is an additive manufacturing process that allow for the manufacture of small and complex component by laser melting and solidification of powder in bed using a high intensity laser beam. The results showed that the laser scanning speed and laser power affects the defect, microstructure and the hardness of the components.

  • PDF

A Study on the Effect of Solidification Substructure on the Hydrogen Embrittlement of Inconel 718 Fabricated by Selective Laser Melting (Selective laser melting 방식으로 제작된 Inconel 718 합금의 수소취성에 미치는 응고셀 조직의 영향에 관한 연구)

  • Lee, Dong-Hyun
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.35 no.4
    • /
    • pp.203-210
    • /
    • 2022
  • In this study, hydrogen embrittlement in Inconel 718 fabricated by selective laser melting (SLM) was investigated. To focus on the effect of the SLM-induced solidification substructure, hydrogen embrittlement behavior of SLM as-built (SLM-AB) sample and that of conventionally produced (Con-S) sample were systematically compared. The detailed microstructural characterization showed that the SLM-AB sample exhibited a solidification substructure including a high density of dislocations and Laves phase, while the Con-S sample showed completely recrystallized grains without any substructure. Although the intrinsic strength in the SLM-AB sample was higher than the Con-S sample, the resistance to hydrogen embrittlement was higher in the SLM-AB sample. Nevertheless, a statistical analysis of the hydrogen-assisted cracks (HACs) revealed that the predominant HAC type of SLM-AB and Con-S samples was similar, i.e., intergranular HAC. The difference in the resistance to hydrogen embrittlement between the SLM-AB and Con-S samples were discussed in terms of the relation between the microstructural feature and its effect on hydrogen accumulation.

Process Analysis of Melting Behaviors in Selective Laser Melting Process (선택적 레이저 용융 공정시 용융 거동에 대한 공정 분석)

  • Sung, M.Y.;Joo, B.D.;Kim, S.H.;Moon, Y.H.
    • Transactions of Materials Processing
    • /
    • v.19 no.8
    • /
    • pp.517-522
    • /
    • 2010
  • Selective laser melting (SLM) is emerged as a new manufacturing technique to directly fabricate precise parts using metallic materials. The final characteristics of a component fabricated through the SLM process are strongly dependent upon various parameters such as laser power, scan rate and pulse duration, etc. This paper, therefore, focuses on the dimensional characteristics of melted $20{\mu}m$ Fe-Cr-Ni powder by fiber laser for the selective laser melting process. With energy density decrease, the height and depth were decreased. Although the conditions are of the same energy density, the shape is different by laser power and scan rate. The shapes at various laser parameters were divided into 3 groups based on depth over height. The smooth regular shape is obtained under the conditions of $50{\mu}m$ of powder height and $15-20{\mu}s$ of pulse duration. And the laser power influenced the variation of shape more significantly than the scan rate.

Optimization for high speed manufacturing of Ti-6Al-4V alloy by a selective laser melting technique (SLM 기술을 이용한 Ti-6Al-4V 합금의 고속 적층 공정 최적화 연구)

  • Lee, Kang Pyo;Kim, Kang Min;Kang, Suk Hyun;Han, Jun Hyun;Jung, Kyung Hwan
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.28 no.5
    • /
    • pp.217-221
    • /
    • 2018
  • Selective laser melting (SLM) technique is one of the additive manufacturing processes, in which functional, complex parts can be directly manufactured by selective melting layers of powder. SLM technique has received great attention due to offering a facile part-manufacturing route and utilizing a hard-to-manufacturing material (e.g. Ti6Al4V). The SLM process allows the accurate fabrication of near-net shaped parts and the significant reduction in the consumption of raw materials when compared to the traditional manufacturing processes such as casting and/or forging. In this study, we focus the high-speed additive manufacturing of Ti6Al4V parts in the aspect of manufacturing time, controlling various process parameters.

Laser Processing Technology using Metal Powders (금속분말의 레이저 공정 기술)

  • Jang, Jeong-Hwan;Moon, Young-Hoon
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.3
    • /
    • pp.191-200
    • /
    • 2012
  • The purpose of this paper is to review the state of laser processing technology using metal powders. In recent years, a series of research and development efforts have been undertaken worldwide to develop laser processing technologies to fabricate metal-based parts. Layered manufacturing by the laser melting process is gaining ground for use in manufacturing rapid prototypes (RP), tools (RT) and functional end products. Selective laser sintering / melting (SLS/SLM) is one of the most rapidly growing rapid prototyping techniques. This is mainly due to the processes's suitability for almost any materials, including polymers, metals, ceramics and many types of composites. The interaction between the laser beam and the powder material used in the laser melting process is one of the dominant phenomena defining feasibility and quality. In the case of SLS, the powder is not fully melted during laser scanning, therefore the SLS-processed parts are not fully dense and have relatively low strength. To overcome this disadvantage, SLM and laser cladding (LC) processes have been used to enable full melting of the powder. Further studies on the laser processing technology will be continued due to the many potential applications that the technology offers.

Comparison of Shear Bond Strength of Veneer Ceramics to Co-Cr Alloys Produced by Selective Laser Melting and Casting Technique (선택적 레이저 용융 그리고 전통적인 주조 기술에 의해 제조된 Co-Cr 합금에 대한 전장용 세라믹의 전단 결합 강도 비교)

  • Hong, Min-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.12
    • /
    • pp.434-439
    • /
    • 2020
  • Selective laser melting (SLM) manufactures an alloy using laser as a heat source, and has recently been introduced in the dental industry. However, there is a lack of analytical research on metal-ceramic restorations achieved by SLM. This study evaluates and compares the metal-ceramic bond strength of Co-Cr alloys produced by selective laser melting and casting methods. Co-Cr samples required for this study were produced through the sintering process of ceramics, by applying the SLM and CAST methods. The metal-ceramic bond strength was measured by applying the shear bond strength test. In order to determine the area fraction of adherent ceramic, Si content of the specimen was measured using scanning electron microscopy SEM/ EDS. Results of the metal-ceramic bond strength and AFAC were analyzed by t-test (α = 0.05). No significant difference was observed comparing the bond strength of SLM and CAST Co-Cr alloys (P> 0.05). However, the SLM group had much better ceramic adherence than the CAST group (P < 0.001). Moreover, oxidation characteristics were similar for both SLM and CAST Co-Cr alloys, but metal structures were different. These results imply that although the bond of ceramic and Co-Cr alloy is not related to the manufacturing method, SLM alloys impart better ceramic adherence. This indicates that alloys made with SLM can be used to fabricate upper implant prostheses in the future. In particular, it is expected to overcome the shortcomings of the CAST method, and save time and cost.

Temperature thread multiscale finite element simulation of selective laser melting for the evaluation of process

  • Lee, Kang-Hyun;Yun, Gun Jin
    • Advances in aircraft and spacecraft science
    • /
    • v.8 no.1
    • /
    • pp.31-51
    • /
    • 2021
  • Selective laser melting (SLM), one of the most widely used powder bed fusion (PBF) additive manufacturing (AM) technology, enables the fabrication of customized metallic parts with complex geometry by layer-by-layer fashion. However, SLM inherently poses several problems such as the discontinuities in the molten track and the steep temperature gradient resulting in a high degree of residual stress. To avoid such defects, thisstudy proposes a temperature thread multiscale model of SLM for the evaluation of the process at different scales. In microscale melt pool analysis, the laser beam parameters were evaluated based on the predicted melt pool morphology to check for lack-of-fusion or keyhole defects. The analysis results at microscale were then used to build an equivalent body heat flux model to obtain the residual stress distribution and the part distortions at the macroscale (part level). To identify the source of uneven heat dissipation, a liquid lifetime contour at macroscale was investigated. The predicted distortion was also experimentally validated showing a good agreement with the experimental measurement.

Status Quo of Powder Bed Fusion Metal Additive Manufacturing Technologies (Powder Bed Fusion 방식 금속 적층 제조 방식 기술 분석)

  • Hwang, In-Seok;Shin, Chang-Seop
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.7
    • /
    • pp.10-20
    • /
    • 2022
  • Recently, metal additive manufacturing (AM) is being investigated as a new manufacturing technology. In metal AM, powder bed fusion (PBF) is a promising technology that can be used to manufacture small and complex metallic components by selectively fusing each powder layer using an energy source such as laser or an electron beam. PBF includes selective laser melting (SLM) and electron beam melting (EBM). SLM uses high power-density laser to melt and fuse metal powders. EBM is similar to SLM but melts metals using an electron beam. When these processes are applied, the mechanical properties and microstructures change due to the many parameters involved. Therefore, this study is conducted to investigate the effects of the parameters on the mechanical properties and microstructures such that the processes can be performed more economically and efficiently.

Effect of Stress Relieving Heat Treatment on Tensile and Impact Toughness Properties of AISI 316L Alloy Manufactured by Selective Laser Melting Process (선택적 레이저 용융 공정으로 제조된 AISI 316L 합금의 인장 및 충격 인성 특성에 미치는 응력 완화 열처리의 영향)

  • Yang, Dong-Hoon;Ham, Gi-Su;Park, Sun-Hong;Lee, Kee-Ahn
    • Journal of Powder Materials
    • /
    • v.28 no.4
    • /
    • pp.301-309
    • /
    • 2021
  • In this study, an AISI 316 L alloy was manufactured using a selective laser melting (SLM) process. The tensile and impact toughness properties of the SLM AISI 316 L alloy were examined. In addition, stress relieving heat treatment (650℃ / 2 h) was performed on the as-built SLM alloy to investigate the effects of heat treatment on the mechanical properties. In the as-built SLM AISI 316 L alloy, cellular dendrite and molten pool structures were observed. Although the molten pool did not disappear following heat treatment, EBSD KAM analytical results confirmed that the fractions of the low- and high-angle boundaries decreased and increased, respectively. As the heat treatment was performed, the yield strength decreased, but the tensile strength and elongation increased only slightly. Impact toughness results revealed that the impact energy increased by 33.5% when heat treatment was applied. The deformation behavior of the SLM AISI 316 L alloy was also examined in relation to the microstructure through analyses of the tensile and impact fracture surfaces.

Production of Ni-Cr Metal Powder by Selective Laser Melting for Dentistry to Observation of Characteristics (치과 SLM용 Ni-Cr 금속분말 특성 관찰)

  • Hong, Minho
    • Journal of Technologic Dentistry
    • /
    • v.37 no.1
    • /
    • pp.23-29
    • /
    • 2015
  • Purpose: The selective laser melting (SLM) process for dentistry, which is one of the additive manufacturing technologies (AM) allows for rapid production of a three-dimensional model with complex shape by directly melting metal powder. This process generates detailed items of a three-dimensional model shape through consolidation of a thin powder layer by utilizing both selective melting and laser beam simultaneously. In regard to SLM process, Fe-base powder, Ti-6AI-4V powder, AI-base powder, etc. have been researched. It is believed that the aforementioned technologies will be widely utilized in manufacturing metal parts using metal powder of raw material. This study chose Ni-Cr-Mo metal powder in order to manufacture metal powder materials that would be used in the selective laser melting for dentistry. Methods: This study manufactured metal powder using mechanical alloying technique (MA) among those metal powder manufacturing techniques. Moreover, this study aimed to utilize the metal powder manufactured after observing the characteristics of powder as preliminary data of Ni-Cr-Mo metal powder. This study could obtain the following conclusions within the experimental limitations. Results: As a result of mechanically alloying Ni-Cr-Mo powder over time, its mean particle size was $66.93{\mu}m$ $54.4{\mu}m$ and $45.39{\mu}m$ at 10h, 20h and 30h, respectively. The gtain form of metal powder by mechanical alloying technique was a sponge-like shape of irregular plate; however, the gtain form manufactured by high-pressure water aromization process had the following three types: globular type, chain type and oval type. Conclusion: This study found $37.65{\mu}m$ as the mean particle size of Ni-Cr-Mo metal powder, which was manufactured using water atomization technique under the following conditions: water atomization flux of 300 liter/min, hydraulic pressure of $400kgf/cm^2$ and injection angle of $45^{\circ}$. This study confirmed that the grain form of powder (solid particle form) would vary depending on the manufacturing process.