DOI QR코드

DOI QR Code

Laser Processing Technology using Metal Powders

금속분말의 레이저 공정 기술

  • Jang, Jeong-Hwan (School of Mechanical Engineering, Engineering Research Center for Net Shape and Die Manufacturing, Pusan National University) ;
  • Moon, Young-Hoon (School of Mechanical Engineering, Engineering Research Center for Net Shape and Die Manufacturing, Pusan National University)
  • 장정환 (부산대학교 기계공학부 정밀정형 및 금형가공 연구소) ;
  • 문영훈 (부산대학교 기계공학부 정밀정형 및 금형가공 연구소)
  • Received : 2011.08.11
  • Published : 2012.03.25

Abstract

The purpose of this paper is to review the state of laser processing technology using metal powders. In recent years, a series of research and development efforts have been undertaken worldwide to develop laser processing technologies to fabricate metal-based parts. Layered manufacturing by the laser melting process is gaining ground for use in manufacturing rapid prototypes (RP), tools (RT) and functional end products. Selective laser sintering / melting (SLS/SLM) is one of the most rapidly growing rapid prototyping techniques. This is mainly due to the processes's suitability for almost any materials, including polymers, metals, ceramics and many types of composites. The interaction between the laser beam and the powder material used in the laser melting process is one of the dominant phenomena defining feasibility and quality. In the case of SLS, the powder is not fully melted during laser scanning, therefore the SLS-processed parts are not fully dense and have relatively low strength. To overcome this disadvantage, SLM and laser cladding (LC) processes have been used to enable full melting of the powder. Further studies on the laser processing technology will be continued due to the many potential applications that the technology offers.

Keywords

References

  1. J. W. Rho, J. H. Kim, and C. K. Lee, J. Kor. Weld. Join. Soc. 26, 34 (2008). https://doi.org/10.5781/KWJS.2008.26.4.034
  2. C. G. Choi, Korean J. Met. Mater. 36, 2153 (1998).
  3. H. K. Shin, H. J. Lee, H. G. Yoo, K. S. Lim, and M. K. Lee, Korean J. Met. Mater. 48, 163 (2010). https://doi.org/10.3365/KJMM.2010.48.02.163
  4. J. D. Majumdar and I. Manna, Sadhana 28, 495 (2003). https://doi.org/10.1007/BF02706446
  5. J. W. Park and C. H. Lee, J. Kor. Inst. Met. & Mater. 38, 172 (2000).
  6. J. H. Lee, J. H. Jang, B. D. Joo, Y. M. Son, and Y. H. Moon, Trans. Nonferrous Met. Soc. China 19, 917 (2009). https://doi.org/10.1016/S1003-6326(08)60377-5
  7. D. Y. Yang, H. C. Kim, and S. H. Park, Trans. Mater. Process. 14, 187 (2005). https://doi.org/10.5228/KSPP.2005.14.3.187
  8. G. N. Levy, R. Schindel, and J. P. Kruth, CIRP Ann. 52, 589 (2003). https://doi.org/10.1016/S0007-8506(07)60206-6
  9. M. Badrossamay and T. H. C. Childs, Int. J. Mach. Tools Manu. 47, 779 (2007). https://doi.org/10.1016/j.ijmachtools.2006.09.013
  10. A. V. Gusarov, I. Yadroitsev, Ph. Bertrand, and I. Smurov, Appl. Surf. Sci. 254, 975 (2007). https://doi.org/10.1016/j.apsusc.2007.08.074
  11. A. T. Clare, P. R. Chalker, S. Davies, C. J. Sutcliffe, and S. Tsopanos, Int. J. Mech. Mater. Des. 4, 181 (2008). https://doi.org/10.1007/s10999-007-9032-4
  12. J. D. Majumdar, A. Pinkerton, Z. Liu, I. Manna, and L. Li, Appl. Surf. Sci. 247, 373 (2005). https://doi.org/10.1016/j.apsusc.2005.01.131
  13. W. M. Steen, Laser Material Processing, 3rd ed., pp. 253- 262, Springer-Verlag, London (2003).
  14. J. Liu and L. Li, Opt. Laser Technol. 37, 287 (2005). https://doi.org/10.1016/j.optlastec.2004.04.009
  15. C. Cui, Z. Guo, Y. Liu, Q. Xie, Z. Wang, J. Hu, and Y. Yao, Opt. Laser Technol. 39, 1544 (2007). https://doi.org/10.1016/j.optlastec.2006.12.005
  16. J. Song, Q. Deng, C. Chen, D. Hu, and Y. Li, Appl. Surf. Sci. 252, 7934 (2006). https://doi.org/10.1016/j.apsusc.2005.10.025
  17. D. H. Bae, S. J. Jung, Y. R. Cho, W. S. Jung, H. S. Jung, C. Y. Kang, and D. S. Bae, J. Kor. Inst. Met. & Mater. 47, 573 (2009).
  18. Y. S. Chang, M. T. Kim, and J. B. Won, Korean J. Met. Mater. 46, 241 (2008).
  19. J. P. Kruth, G. Levy, F. Klocke, and T. H. C. Childs, CIRP Ann. 56, 730 (2007). https://doi.org/10.1016/j.cirp.2007.10.004
  20. A.V. Cusarov, T. Laoui, L. Froyen, and V. I. Titov, Int. J. Heat Mass Tran. 46, 1103 (2003). https://doi.org/10.1016/S0017-9310(02)00370-8
  21. P. K. Bai and W. F. Wang, Trans. Nonferrous Met. Soc. China 17, 543 (2007). https://doi.org/10.1016/S1003-6326(07)60130-7
  22. C. Yan, Y. Shi, J. Yang, and J. Liu, J. Mater. Process. Technol. 209, 5785 (2009). https://doi.org/10.1016/j.jmatprotec.2009.06.010
  23. J. P. Kruth, P. Mercelis, J. Van Vaerenbergh, L. Froyen, and M. Rombouts, Rapid Prototyping J. 11, 26 (2005). https://doi.org/10.1108/13552540510573365
  24. K. Murali, A. N. Chatterjee, P. Saha, R. Palai, S. Kumar, S. K. Roy, P. K. Mishra, and A. R. Choudhury, J. Mater. Process. Technol. 136, 179 (2003). https://doi.org/10.1016/S0924-0136(03)00150-X
  25. N. Tolochko, S. Mozzharov, T. Laoui, and L. Froyen, Rapid Prototyping J. 9, 68 (2003). https://doi.org/10.1108/13552540310467077
  26. F. Klocke, T. Celiker, and Y. A. Song, Rapid Prototyping J. 1, 32 (1995). https://doi.org/10.1108/13552549510094250
  27. L. Lu, J. Y. H. Fuh, and Y. S. Wong, Laser-induced materials and processes for rapid prototyping, p. 89, Kluwer Academic Pulishers, Norwell (2001).
  28. Y. A. Song, J. of the KSPE 17, 11 (2000).
  29. Y. Shi, W. Zhang, Y. Cheng, and S. Huang, Int. J. Mach. Tools Manu. 47, 873 (2007). https://doi.org/10.1016/j.ijmachtools.2006.08.013
  30. K. Senthilkumaran, P. M. Pandey, and P. V. M. Rao, Mater. Des. 30, 2946 (2009). https://doi.org/10.1016/j.matdes.2009.01.009
  31. A. Rosochowski and A. Matuszak, J. Mater. Process. Technol. 106, 191 (2000). https://doi.org/10.1016/S0924-0136(00)00613-0
  32. K. M. Au and K. M. Yu, Int. J. Adv. Manuf. Technol. 34, 496 (2007). https://doi.org/10.1007/s00170-006-0628-x
  33. B. Van der Schueren and J. P. Kruth, Rapid Prototyping J. 1, 23 (1995). https://doi.org/10.1108/13552549510094241
  34. F. Verhaeghe, T. Craeghs, J. Heulens, and L. Pandelaers, Acta Mater. 57, 6006 (2009). https://doi.org/10.1016/j.actamat.2009.08.027
  35. D. Buchbinder, H. Schleifenbaum, S. Heidrich, W. Meiners, and J. Bultmann, Physics Procedia 12, 271 (2011). https://doi.org/10.1016/j.phpro.2011.03.035
  36. B. D. Joo, J. H. Jang, J. H. Lee, Y. M. Son, and Y. H. Moon, J. Mater. Sci. Technol. 26, 375 (2010).
  37. M. F. Zaeh and G. Branner, Prod. Eng. 4, 35 (2010). https://doi.org/10.1007/s11740-009-0192-y
  38. B. Du, Z. Zou, X. Wang, and S. Qu, Mater. Lett. 62, 689 (2008). https://doi.org/10.1016/j.matlet.2007.06.036
  39. W. Wang, M. Wang, Z. Jie, F. Sun, and D. Huang, Opt. Lasers Eng. 46, 810 (2008). https://doi.org/10.1016/j.optlaseng.2008.05.015
  40. J. D. Kim and Y. Peng, J. Mater. Process. Technol. 104, 284 (2000). https://doi.org/10.1016/S0924-0136(00)00528-8
  41. N. H. Kang and Y. G. Yoo, J. Kor. Weld. Join. Soc. 25, 7 (2007). https://doi.org/10.5781/KWJS.2007.25.1.007
  42. Y. Huang, Opt. Laser Technol. 43, 965 (2011). https://doi.org/10.1016/j.optlastec.2010.12.005
  43. J. Liu and L. Li, J. Manuf. Processes 8, 1 (2006). https://doi.org/10.1016/S1526-6125(06)70096-2
  44. G. C. Onwubolu, J. P. Davim, C. Oliveira and A. Cardoso, Opt. Laser Technol. 39, 1130 (2007). https://doi.org/10.1016/j.optlastec.2006.09.008
  45. L. Dubourg and J. Archambeault, Surf. Coat. Technol. 202, 5863 (2008). https://doi.org/10.1016/j.surfcoat.2008.06.122
  46. J. H. Jang, B. D. Joo, S. M. Mun, M. Y. Sung and Y. H. Moon, Met. Mater. Int. 17, 167 (2011). https://doi.org/10.1007/s12540-011-0223-z
  47. B. D. Joo, J. H. Jang, J. H. Lee, Y. M. Son and Y. H. Moon, Trans. Nonferrous Met. Soc. China 19, 375 (2009).
  48. J. H. Lee, J. H. Jang, B. D. Joo, H. S. Yim, and Y. H. Moon, Trans. Nonferrous Met. Soc. China 19, 284 (2009). https://doi.org/10.1016/S1003-6326(10)60286-5
  49. J. J. Beaman, J. W. Barlow, D. L. Bourell, R. H. Crawford, H. L. Marcus, and K. P. McAlea, Solid Freeform Fabrication: A New Direction In Manufacturing, p. 330, Kluwer Academic Press, Boston (1997).
  50. A. Simchi and H. Pohl, Mater. Eng., A 359, 119 (2003). https://doi.org/10.1016/S0921-5093(03)00341-1
  51. L. Hao, S. Dadbakhsh, O. Seaman, and M. Felstead, J. Mater. Process. Technol. 209, 5793 (2009). https://doi.org/10.1016/j.jmatprotec.2009.06.012
  52. R. Morgan, C. J. Sutcliffe, and W. O'Neill, J. Mater. Sci. 39, 1195 (2004). https://doi.org/10.1023/B:JMSC.0000013875.62536.fa
  53. L. Hao, M. M. Savalani, Y. Zhang, K. E. Tanner, and R. A. Harris, Proc. IMechE Part H, Journal of Engineering in Medicine 220, 521 (2006). https://doi.org/10.1243/09544119JEIM67
  54. J. W. Xie, P. Fox, W. O'Neill, and C. J. Sutcliffe, J. Mater. Process. Technol. 170, 516 (2005). https://doi.org/10.1016/j.jmatprotec.2005.05.055
  55. E. Louvis, P. Fox and C. J. Sutcliffe, J. Mater. Process. Technol. 211, 275 (2011). https://doi.org/10.1016/j.jmatprotec.2010.09.019
  56. K. A. Mumtaz and N. Hopkinson, J. Mater. Process. Technol. 210, 279 (2010). https://doi.org/10.1016/j.jmatprotec.2009.09.011
  57. I. Yadroitsev and I. Smurov, Physics Procedia 5, 551 (2010). https://doi.org/10.1016/j.phpro.2010.08.083
  58. Y. A. Song, CIRP Ann. 46, 127 (1997). https://doi.org/10.1016/S0007-8506(07)60790-2
  59. D. Gu and Y. Shen, Appl. Surf. Sci. 255, 1880 (2008). https://doi.org/10.1016/j.apsusc.2008.06.118
  60. P. A. Kobryn, E. H. Moore, and S. L. Semiatin, Scr. Mater. 43, 299 (2000). https://doi.org/10.1016/S1359-6462(00)00408-5
  61. B. Vandenbroucke and J. P. Kruth, Rapid Prototyping J. 13, 196 (2007). https://doi.org/10.1108/13552540710776142
  62. F. Huang, Z. Jiang, X. Liu, J. Lian, and L. Chen, J. Mater. Process. Technol. 209, 4970 (2009). https://doi.org/10.1016/j.jmatprotec.2009.01.019
  63. K. A. Mumtaz and N. Hopkinson, Rapid Prototyping J. 15, 96 (2009). https://doi.org/10.1108/13552540910943397
  64. K. A. Mumtaz, P. Erasenthiran, and N. Hopkinson, J. Mater. Process. Technol. 195, 77 (2008). https://doi.org/10.1016/j.jmatprotec.2007.04.117
  65. J. Song, Q. Deng, C. Chen, D. Hu, and Y. Li, Appl. Surf. Sci. 252, 7934 (2006). https://doi.org/10.1016/j.apsusc.2005.10.025
  66. K. Osakada and M. Shiomi, Int. J. Mach. Tools Manu. 46, 1188 (2006). https://doi.org/10.1016/j.ijmachtools.2006.01.024
  67. D. K. Pattanayak, A. Fukuda, T. Matsushita, M. Takemoto, S. Fujibayashi, K. Sasaki, N. Nishida, T. Nakamura, and T. Kokubo, Acta Biomater. 7, 1398 (2011). https://doi.org/10.1016/j.actbio.2010.09.034
  68. W. Wang, M. Wang, Z. Jie, F. Sun, and D. Huang, Opt. Lasers Eng. 46, 810 (2008). https://doi.org/10.1016/j.optlaseng.2008.05.015
  69. J. Grum and J. M. Slabe, Appl. Surf. Sci. 208, 424 (2003).
  70. Ph. Bertrand, F. Bayle, C. Combe, P. Goeuriot, and I. Smurov, Appl. Surf. Sci. 254, 989 (2007). https://doi.org/10.1016/j.apsusc.2007.08.085
  71. P. Vallabhajosyula and D. L. Bourell, Rapid Prototyping J. 17, 262 (2011). https://doi.org/10.1108/13552541111138388
  72. J. H. Liu, Y. S. Shi, Z. L. Lu, Y. Xu, K. H. Chen, and S. H. Huang, Mater. Sci. Eng., A 444, 146 (2007). https://doi.org/10.1016/j.msea.2006.08.070
  73. I. Yadroitsev, I. Shishkovsky, P. Bertrand, and I. Smurov, Appl. Surf. Sci. 255, 5523 (2009). https://doi.org/10.1016/j.apsusc.2008.07.154
  74. F. E. Wiria, N. Sudrmadji, K. F. Leong, C. K. Chua, E. W. Chug, and C. C. Chan, Rapid Prototyping J. 16, 400 (2010). https://doi.org/10.1108/13552541011083317