Browse > Article
http://dx.doi.org/10.4150/KPMI.2021.28.4.301

Effect of Stress Relieving Heat Treatment on Tensile and Impact Toughness Properties of AISI 316L Alloy Manufactured by Selective Laser Melting Process  

Yang, Dong-Hoon (Department of Materials Science and Engineering, Inha University)
Ham, Gi-Su (Department of Materials Science and Engineering, Inha University)
Park, Sun-Hong (Technical Research Laboratory, POSCO)
Lee, Kee-Ahn (Department of Materials Science and Engineering, Inha University)
Publication Information
Journal of Powder Materials / v.28, no.4, 2021 , pp. 301-309 More about this Journal
Abstract
In this study, an AISI 316 L alloy was manufactured using a selective laser melting (SLM) process. The tensile and impact toughness properties of the SLM AISI 316 L alloy were examined. In addition, stress relieving heat treatment (650℃ / 2 h) was performed on the as-built SLM alloy to investigate the effects of heat treatment on the mechanical properties. In the as-built SLM AISI 316 L alloy, cellular dendrite and molten pool structures were observed. Although the molten pool did not disappear following heat treatment, EBSD KAM analytical results confirmed that the fractions of the low- and high-angle boundaries decreased and increased, respectively. As the heat treatment was performed, the yield strength decreased, but the tensile strength and elongation increased only slightly. Impact toughness results revealed that the impact energy increased by 33.5% when heat treatment was applied. The deformation behavior of the SLM AISI 316 L alloy was also examined in relation to the microstructure through analyses of the tensile and impact fracture surfaces.
Keywords
Selective laser melting; AISI 316L; Heat treatment; Tensile; Impact toughness;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. Y. Huang, J. J. Yeh, S. L. Jeng, C. Y. Chen and R. C. Kuo: Mater. Trans., 47 (2006) 409.   DOI
2 ASTM, A276, American Society for testing and materials, U. S. A. (2004).
3 S. K. Samanta, S. K. Mitra and T. K. Pal: Mater. Sci. Eng. A, 430 (2006) 242.   DOI
4 T. Hryniewicz, R. Rokicki and K. Rokosz: Surf. Coat. Technol., 202 (2008) 1668.   DOI
5 E. Paffumi, K. F. Nilsson and N. G. Taylor: Int. J. Press. Vessels Pip., 85 (2008) 798.   DOI
6 J. P. Kruth, L. Froyen, J. V. Vaerenbergh, P. Mercelis, M. Rombouts and B. Lauwers: J. Mat. Proc. Tech., 149 (2004) 616.   DOI
7 L. Thijs, F. Verhaeghe, T. Craeghs, J. V. Humbeeck and J. P. Kruth: Acta Mater., 58 (2010) 3303.   DOI
8 B. Vandenbroucke and J. P. Kruth: Rap. Proto. J., 13 (2007) 196.   DOI
9 D. Herzog, V. Seyda, E. Wycisk and C. Emmelmann: Acta Mater., 117 (2016) 371.   DOI
10 J. P. Kruth, P. Mercelis and J. V. Vaerenbergh: Rap. Proto. J., 11 (2005) 26.   DOI
11 I. Tolosa, F. Garciandia, F. Zubiri, F. Zapirain and A. Esnaola: Int. J. Adv. Manuf. Technol., 51 (2010) 639.   DOI
12 R. Li, Y. Shi. Z. Wang, L. Wang, J. Liu and W. Jiang: Appl. Surf. Sci., 256 (2010) 4350.   DOI
13 B. Zhang, L. Dembinski and C. Coddet: Mater. Sci. Eng. A, 584 (2013) 21.   DOI
14 I. Yadroitsev, P. Krakhmalev, I. Yadroitsava, S. Johansson and I. Smurov: J. Mat. Proc. Tech., 213 (2013) 606.   DOI
15 B. Song. S. Dong. Q. Liu, H. Liao and C. Coddet: Mater. Des., 43 (2014) 727.
16 P. Mercelis and J. P. Kruth: Rap. Proto. J., 12 (2006) 254.   DOI
17 E. Yasa and J. P. Kruth: Procedia Eng., 19 (2011) 389.   DOI
18 S. G. Chowdhury, S. Das and P. K. De: Acta Mater., 53 (2005) 3951.   DOI
19 W. Shifeng, L. Shuai, W. Qingsong, C. Yan, Z. Sheng and S. Yusheng: J. Mat. Proc. Tech., 214 (2014) 2660.   DOI
20 M. Sergio, F. Lima and S. Sankare: Mater. Des., 55 (2014) 526.   DOI