• Title/Summary/Keyword: Selective Catalytic Reduction

Search Result 316, Processing Time 0.037 seconds

The Efficiency of NOx Reduction by Regeneration and Wash Coating of Spent RHDM Catalyst (폐 RHDM 촉매의 재생 후 워시코팅에 의한 NOx 저감 효율)

  • Na, Woo-jin;Park, Hea-Kyung
    • Journal of the Korean Applied Science and Technology
    • /
    • v.35 no.3
    • /
    • pp.876-885
    • /
    • 2018
  • Utilization of spent RHDM(Residue Hydrodemetallation) catalyst as de-NOx SCR(Selective Catalytic Reduction) catalyst was studied by conducting by heptane cleaning and high-temperature roasting for removal of deposited carbon and sulfur. Followed by oxalic acid leaching was carried out for controlling excess vanadium deposited on spent RHDM catalyst in search of appropriate vanadium loadings for the best SCR performance and the leaching conditions are 5~15wt% concentration of oxalic acid and 5min leaching time at $50^{\circ}C$ with the ultra-sonic agitator. De-NOx activities of prepared and commercial SCR catalyst were measured by the atmospheric SCR catalyst performance test unit, their residual content were also carried out by ICP, C&S Analysis and XRF. Acid leaching (AL-10) catalyst showed the highest de-NOx efficiency of all prepared catalysts and the de-NOx efficiency over wash coated catalyst(WC-AL-10) was equivalent to that of commercial SCR catalyst. Therefore the possibility of using as SCR catalyst for each application by adjusting treatment conditions of spent RHDM catalyst was found and further research will be needed in detail for the its commercialization.

A Study on Hybrid DeNOx Process Using Selective Catalytic Reduction and Adsorption (선택적촉매환원과 흡착을 이용한 복합 탈질공정 연구)

  • Moon, Seung-Hyun;Jeon, Dong-Hwan;Park, Sung-Youl
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.12
    • /
    • pp.1329-1336
    • /
    • 2007
  • This study was carried out to develop an efficient process abating high NO concentration. A hybrid process of selective catalytic reduction(SCR) and activated carbon fiber(ACF) adsorption was newly designed and tested. Used ACF in NO adsorption was regenerated by simultaneously applying heat and vacuum. The result of ACF regeneration was for superior in the desorption condition at $140^{\circ}C$ and vacuum 600 mmHg. A commercial catalyst was used at the conditions of reaction temperature at $300^{\circ}C$, $NH_3/NO$ mole ratio = 1.0 for SCR process. NO evolved from ACF regeneration reactor could be removed by SCR reactor up to 98%. But high concentration of NO was exhausted from SCR reactor for one minute when the flue gas of NO 300 ppm and deserted NO from ACF regeneration were simultaneously treated by the same SCR reactor. Therefore, it is necessary to use additional small sized SCR reactor or to increase $NH_3$ concentration for a short time along with NO concentration rather than to mix flue gas with the gas evolving from ACF regeneration at fixed $NH_3$ inlet concentration. The hybrid process of SCR and ACF showed high NO removal efficiency over 80% at any time courses. Through the repeated cycles, stable DeNOx efficiency was maintained, indicating that the hybrid process would be a good countermeasure to the spotaneously high NO concentration instead of increasing the SCR capacity.

Effect of Vane Angle of Swirl Type Mixer on Flow Mixing and Pressure Drop in Marine Selective Catalytic Reduction Systems (선박용 SCR 시스템에서 스월형 혼합기의 날개 각도가 유동혼합 및 압력강하에 미치는 영향)

  • Park, Taewha;Sung, Yonmo;Kim, Taekyoung;Choi, Cheolyong;Kim, Duckjool;Choi, Gyungmin
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.4
    • /
    • pp.443-448
    • /
    • 2015
  • A swirl type mixer was developed to improve the flow mixing performance of a marine selective catalytic reduction system. In this study, the swirl type mixer and a multi-staged swirl type mixer, in which the angle of the vanes at each stage is controllable were considered to provide the optimal region of angles for the mixers. The effects of the vane angles in both mixers on the uniformity index and pressure drop were investigated using a computational fluid dynamics simulation. In the swirl type mixer, the optimal conditions for the flow mixing performance were observed at vane angles from 30 to 60 degrees when vane angles could be adjusted between 10 to 80 degrees, however, the pressure drop increased continually with increasing vane angle of the mixer. On the other hand, control of the individual staged angles of the multi-staged mixer showed that it is possible to keep enhancing flow mixing performance while reducing the pressure drop.

NO Reduction Performance of V2O5-WO3/TiO2 Catalyst Supported on a Ceramic Sheet Filter (세라믹 시트 필터에 부착된 V2O5-WO3/TiO2 촉매의 NO 환원 성능)

  • Choi, Joo Hong
    • Clean Technology
    • /
    • v.24 no.1
    • /
    • pp.27-34
    • /
    • 2018
  • Catalytic filter has many advantages for the industrial application owing to its bi-functional ability to treat nitrogen oxides and particulate simultaneously. The technical feasibility of using the catalytic filter in the flue gas treatment process will be more promoted if the high porous ceramic sheet filter is utilized. However, it is not easy to prepare the effective catalytic filter using sheet filter as it has less room for catalyst support due to its thin layer. In this study, catalytic filter using a domestic ceramic sheet filter element has been prepared and conducted the experimental evaluation for NO reduction performance. The current sheet filter element shows the low catalytic activity less than 92% conversion for NO concentration 700 ppm at the face velocity $0.02m\;s^{-1}$. This unexpected low catalytic activity seems to be caused by the present of extraordinary large pores from the lack of uniformity in the pore size distribution of the sheet filter. The large pore size of the sheet filter is reduced by composing the smaller powder as its raw material, which presents improvement in NO conversion more than 96%. More improvement is observed showing 98% NO conversion which is applicable to a commercial plant when the catalyst coating layer is expanded by adding the large $TiO_2$ particles during the catalyst preparation. Both of above two methods is regarded as that the broad gates of the larger pores in the coating layer are effectively filled with the proper catalyst. So these results encourage the utilization of sheet filter as a good catalytic filter material with its potential merit of high permeability.

Effect of Metal Loading Methods on the Catalytic Activity for N2O/NO Simultaneous Reduction over Fe/BEA Zeolite Catalyst (Fe/BEA 제올라이트 촉매의 N2O/NO 동시 환원 반응에서 금속 담지 방법이 촉매 활성에 미치는 영향)

  • Jeon, Min-Wook;Lee, Seung-Jae;Ryu, In-Soo;Moon, Seung-Hyun;Rhee, Young Woo;Jeon, Sang Goo
    • Korean Chemical Engineering Research
    • /
    • v.55 no.5
    • /
    • pp.679-684
    • /
    • 2017
  • The influence of catalytic activity on Fe loading methods over Fe/BEA zeolite catalyst in the simultaneous reduction of $N_2O/NO$ has been studied. The Fe/BEA zeolite catalysts were prepared by ion exchange and impregnation. Catalytic tests were carried out in the selective catalytic reduction using ammonia as a reductant to identify the activity of prepared catalysts. The results show that the ion exchanged catalyst exhibited higher NO and $N_2O$ conversions than the impregnated catalysts did. To investigate the difference in catalytic activity, we performed various analyses such as XRD, $H_2-TPR$, $O_2-TPD$ and XPS. It is considered that the increase in the activity of the ion exchange catalyst is due to improved reducibility and increased oxygen desorption rate. In addition, the ion exchange catalyst was found through the XPS analysis that $Fe^{2+}$, which is related to the catalytic activity, is formed about 1.6 times more than the impregnated catalyst.

A Study on Coating Characteristics of Cleaning Filter for DeNOx Catalyst (NOx 저감촉매의 집진필터 고착 특성에 대한연구)

  • 최현덕;김상도;정순관;박영옥;서용칠
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2002.11a
    • /
    • pp.261-262
    • /
    • 2002
  • 산업용 보일러나 발전설비와 같은 대규모 고정원에서 다량 배출되는 NOx의 제거를 위한 여러 기술 중에서 현재 암모니아를 환원제로 사용하는 선택적 촉매 환원법(Selective Catalytic Reduction : SCR)이 가장 유망하며, 많은 연구와 더불어 선진국가에서 상업화되어 조업되고 있다. SCR 공정은 시설투자와 운전비가 비교적 저렴하고 높은 NOx 전환율(90%이상)과 폐수처리 등의 후처리 공정이 필요하지 않은 장점이 있다. (중략)

  • PDF

$NO_x$ Removal Using the Catalysts Impregnated Fibrous Ceramic Filters (촉매 담지 섬유형 세라믹 필터를 이용한 $NO_x$ 제거)

  • 정일철;홍민선;이동섭;이재춘
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 1999.10a
    • /
    • pp.209-210
    • /
    • 1999
  • 오존 precursor인 NOx의 배출기준은 점차 강화되고 있고 NOx의 처리기술로는 선택적 촉매환원법 (Selective Catalytic Reduction; SCR)이 가장 널리 사용되고 있다. 국내 SCR 적용공정의 경우, 100% 수입에 의존하고 있어 support 촉매의 국산화가 절실히 요구되고있다. 이에 본 연구에서는 support로 섬유형 세라믹 필터를 사용하여 CuO, V$_2$O$_{5}$ 촉매를 담지시켜 NOx의 제거실험을 수행하였다.(중략)

  • PDF

Introduction For Market & Technical Trend of Regasification Vessel (Regasification vessel의 시장 전망과 기술 동향)

  • Lee, Dong-Hyun
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.181-182
    • /
    • 2006
  • 최근 미주의 급격한 LNG 수요와 더불어 Safety, 환경 및 테러의 문제를 안고 있는 육상 LNG terminal의 대안으로 등장한 LNG Regasification Vessel의 시장 전망과 미주 지역의 엄격한 환경 규제를 만족시키기 위한 Regasification Vessel의 기술 동향에 대해 고찰하였다.

  • PDF

Evaluation of Al/Al$_2$O$_3$- Coated Wire-mesh Honeycomb for NOx SCR (Al/Al$_2$O$_3$가 코팅된 금속형 저압차 반응기의 질소 산화물 선택적 제거 반응에의 적용)

  • 최진성;양경식;정종식
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2003.11a
    • /
    • pp.447-448
    • /
    • 2003
  • SOx 등과 함께 대기오염 발생에 가장 크게 관여하는 NOx를 제거 하고자 오래전부터 지금까지 많은 연구가 수행되어 왔다. NOx가 배출되는 유형에 따라 발전소, 보일러 및 산업체와 같은 고정원에서 배출되는 경우와 자동차나 선박과 같은 이동원에서 배출되는 두 가지의 경우가 있다. 고정원에서 NOx를 제거하는 가장 효율적인 방법은 암모니아에 의한 NOx의 선택적 제거법(Selective Catalytic Reduction)으로 알려져 있다. (중략)

  • PDF