• Title/Summary/Keyword: Selective Blocking

Search Result 87, Processing Time 0.024 seconds

N-(4-[$^{18}F$]Fluoromethylbenzyl)spiperone : A Selective Radiotracer for In Vivo Studies of Dopamine $D_2$ Receptors (N-(4-[$^{18}F$Fluoromethylbenzyl)spiperone : 유력한 도파민 $D_2$ 수용체 선택성 방사성리간드)

  • Kim, Sang-Eun;Choe, Yearn-Seong;Chi, Dae-Yoon;Lee, Kyung-Han;Choi, Yong;Kim, Byung-Tae
    • The Korean Journal of Nuclear Medicine
    • /
    • v.31 no.4
    • /
    • pp.421-426
    • /
    • 1997
  • We evaluated the in vivo kinetics, distribution, and pharmacology of N-(4-[$^{18}F$]fluoromethylbenzyl)spiperone ([$^{18}F$]FMBS), a newly developed derivative of spiperone, as a potentially more selective radiotracer for the dopamine (DA) $D_2$ receptors. Mice received 1.9-3.7 MBq (1.8-3.6 nmol/kg) of [$^{18}F$]FMBS by tail vein injection. The time course and regional distribution of the tracer in brain were assessed. Blocking studies were carried out by intravenously preinjecting DA $D_2$ receptor blockers (spiperone, butaclamol) as well as drugs with high affinity for DA $D_1$ (SCH 23390), DA transporter (GBR 12909), and serotonin $S_2$ ($5-HT_2$) (ketanserin) sites. After injection of the tracer, the radioactivity in striatum increased steadily over time, resulting in a striatal-to-cerebellar ratio of 4.8 at 120 min postinjection. By contrast, the radioactivity in cerebellum, frontal cortex, and remaining cortex washed out rapidly. Preinjection of unlabeled FMBS (1 mg/kg) and spiperone (1 mg/kg) reduced [$^{18}F$]FMBS striatal-to-cerebellar ratio by 41% and 80%, respectively. (+)-Butaclamol (1 mg/kg) blocked 80% of the striatal [$^{18}F$]FMBS binding, while (-)-butaclamol (1 mg/kg) did not. Preinjection of SCH 23390 (1 mg/kg) and GBR 12909 (5 mg/kg) had no significant effect on [$^{18}F$]FMBS binding. Ketanserin (1 mg/kg), a ligand for the $5-HT_2$ receptors, did not cause significant inhibition either in striatum, in frontal cortex, or the remaining cortex. The results demonstrate that [$^{18}F$]FMBS labels DA $D_2$ receptors selectively in vivo in the mouse brain. It may hold promise as a selective radiotracer for studying DA $D_2$ receptors in vivo by PET.

  • PDF

The Inhibitory Effects of 5-Hydroxytryptamine on the Intestine (5-Hydroxytryptamine의 장억제작용(腸抑制作用))

  • Chang, Il-Hwan
    • The Korean Journal of Pharmacology
    • /
    • v.2 no.1 s.2
    • /
    • pp.71-82
    • /
    • 1966
  • The inhibitory effect of 5-hydroxytryptamine (5-HT) on the isolated intestinal strips of the tortoise (Amyda japonica), rat, rabbit and guinea pig was investigated. 1) The strips from the middle or lower part of the tortoise intestine responded with relaxation to 5-HT $(10^{-9}{\sim}10^{-5}g/ml)$, and the magnitude of the relaxation was proportional to the dose of 5-HT. The rectal part of the tortoise intestine, in contrast, showed contraction, the magnitude of which also was proportional to the dose of 5-HT. 2) Various blocking agents such as methysergide, morphine, tetracaine, nethalide, bretylium, hexamethonium, mecamylamine and chlorisondamine, showed no selective blocking activity on the relaxant effect of 5-HT on the tortoise intestine. The inhibitory effect of isoproterenol on the tortoise intestine, however, was selectively blocked by nethalide, and the stimulatory effect of 5-HT on the rectal part of the tortoise was blocked by methysergide. 3) In the presence of 5-HT, the stimulatory effect of DMPP on the tortoise intestine was remarkably attenuated, whereas that of acetylcholine and $BaCl_2$ was little affected. In the presence of isoproterenol, the stimulatory effect of acetylcholine and $BaCl_2$ were affected, but that of DMPP was little affected. 4) Large dose of 5-HT($10^{-4}$g/ml) produced inhibitory effect on the strips from the distal part of the isolated colon of the rat, rabbit and guinea pig, when the strips had been exposed to 5-HT($10^{-4}$g/ml), methysergide or phen`oxybenzamine. 5) Bretylium, as well as nethalide, abolished or remarkably reduced, in a few cases of the experiments, the inhibitory effect of the large dose of 5-HT on the distal part of the colon, whereas morphine did not affect it. 6) The ileal strips of the guinea pig also showed relaxation, as in the colonic strips, having been exposed to the large dose of 5-HT or phenoxybenzamine. This effect, however, was not obsered in the case of the rabbit ileum. 7) The property of the action-site of 5-HT in the tortoise intestine seemd to be different from the 5-HT receptors which have been revealed by several investigators. 8) Adrenergic component seemed to be participated in the inhibitory effect of 5-HT on the colon of the rat and rabbit.

  • PDF

Improving Physical Fouling Tolerance of PES Filtration Membranes by Using Double-layer Casting Methods (PES 여과막의 물리적 막오염 개선을 위한 기공 구조 개선 연구)

  • Chang-Hun Kim;Youngmin Yoo;In-Chul Kim;Seung-Eun Nam;Jung-Hyun Lee;Youngbin Baek;Young Hoon Cho
    • Membrane Journal
    • /
    • v.33 no.4
    • /
    • pp.191-200
    • /
    • 2023
  • Polyethersulfone (PES) is a widely employed membrane material for water and industrial purification applications owing to its hydrophilicity and ease of phase separation. However, PES membranes and filters prepared using the nonsolvent induced phase separation method often encounter significant flux decline due to pore clogging and cake layer formation on the dense membrane surfaces. Our investigation revealed that tight microfiltration or loose ultrafiltration membranes can be subject to physical fouling due to the formation of a dense skin layer on the bottom side caused by water intrusion to the gap between the shrank membrane and the substrate. To investigate the effect of the bottom surface porosity on membrane fouling, two membranes with the same selective layers but different sub-layer structures were prepared using single and double layer casting methods, respectively. The double layered PES membrane with highly porous bottom surface showed high flux and physical fouling tolerance compared to the pristine single layer membrane. This study highlights the importance of physical optimization of the membrane structure to prevent membrane fouling.

Resveratrol Inhibits Nicotinic Stimulation-Evoked Catecholamine Release from the Adrenal Medulla

  • Woo, Seong-Chang;Na, Gwang-Moon;Lim, Dong-Yoon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.12 no.4
    • /
    • pp.155-164
    • /
    • 2008
  • Resveratrol has been known to possess various potent cardiovascular effects in animal, but there is little information on its functional effect on the secretion of catecholamines (CA) from the perfused model of the adrenal medulla. Therefore, the aim of the present study was to determine the effect of resveratrol on the CA secretion from the isolated perfused model of the normotensive rat adrenal gland, and to elucidate its mechanism of action. Resveratrol (10${\sim}100{\mu}$M) during perfusion into an adrenal vein for 90 min inhibited the CA secretory responses evoked by ACh (5.32 mM), high $K^+$ (a direct membrane-depolarizer, 56 mM), DMPP (a selective neuronal nicotinic $N_n$ receptor agonist, 100${\mu}$M) and McN-A-343 (a selective muscarinic $M_1$ receptor agonist, 100${\mu}$M) in both a time- and dose- dependent fashion. Also, in the presence of resveratrol (30${\mu}$M), the secretory responses of CA evoked by veratridine 8644 (an activator of voltage-dependent$Na^+$ channels, 100${\mu}$M), Bay-K-8644 (a L-type dihydropyridine $Ca^{2+}$ channel activator, 10${\mu}$M), and cyc1opiazonic acid (a cytoplasmic $Ca^{2+}$-ATPase inhibitor, 10${\mu}$M) were significantly reduced. In the simultaneous presence of resveratrol (30${\mu}$M) and L-NAME (an inhibitor of NO synthase, 30${\mu}$M), the CA secretory evoked by ACh, high $K^+$, DMPP, McN-A-343, Bay-K-8644 and cyc1opiazonic acid were recovered to a considerable extent of the corresponding control secretion compared with the inhibitory effect of resveratrol alone. Interestingly, the amount of nitric oxide (NO) released from the adrenal medulla was greatly increased in comparison to its basal release. Taken together, these experimental results demonstrate that resveratrol can inhibit the CA secretory responses evoked by stimulation of cholinergic nicotinic receptors, as well as by direct membrane-depolarization in the isolated perfused model of the rat adrenal gland. It seems that this inhibitory effect of resveratrol is exerted by inhibiting an influx of both ions through $Na^+$ and $Ca^{2+}$ channels into the adrenomedullary cells as well as by blocking the release of $Ca^{2+}$ from the cytoplasmic calcium store, which are mediated at least partly by the increased NO production due to the activation of NO synthase.

Influence of Ketamine on Catecholamine Secretion in the Perfused Rat Adrenal Medulla

  • Ko, Young-Yeob;Jeong, Yong-Hoon;Lim, Dong-Yoon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.12 no.3
    • /
    • pp.101-109
    • /
    • 2008
  • The aim of the present study was to examine the effects of ketamine, a dissociative anesthetics, on secretion of catecholamines (CA) secretion evoked by cholinergic stimulation from the perfused model of the isolated rat adrenal gland, and to establish its mechanism of action, and to compare ketamine effect with that of thiopental sodium, which is one of intravenous barbiturate anesthetics. Ketamine ($30{\sim}300{\mu}M$), perfused into an adrenal vein for 60 min, dose- and time-dependently inhibited the CA secretory responses evoked by ACh (5.32 mM), high $K^+$ (a direct membrane-depolarizer, 56 mM), DMPP (a selective neuronal nicotinic NN receptor agonist, $100{\mu}M$) and McN-A-343 (a selective muscarinic M1 receptor agonist, $100{\mu}M$). Also, in the presence of ketamine ($100{\mu}M$), the CA secretory responses evoked by veratridine (a voltage-dependent $Na^+$ channel activator, $100{\mu}M$), Bay-K-8644 (an L-type dihydropyridine $Ca^{2+}$ channel activator, $10{\mu}M$), and cyclopiazonic acid (a cytoplasmic $Ca^{2+}$-ATPase inhibitor, $10{\mu}M$) were significantly reduced, respectively. Interestingly, thiopental sodium ($100{\mu}M$) also caused the inhibitory effects on the CA secretory responses evoked by ACh, high $K^+$, DMPP, McN-A-343, veratridine, Bay-K-8644, and cyclopiazonic acid. Collectively, these experimental results demonstrate that ketamine inhibits the CA secretion evoked by stimulation of cholinergic (both nicotinic and muscarinic) receptors and the membrane depolarization from the isolated perfused rat adrenal gland. It seems likely that the inhibitory effect of ketamine is mediated by blocking the influx of both $Ca^{2+}$ and $Na^+$ through voltage-dependent $Ca^{2+}$ and $Na^+$ channels into the rat adrenal medullary chromaffin cells as well as by inhibiting $Ca^{2+}$ release from the cytoplasmic calcium store, which are relevant to the blockade of cholinergic receptors. It is also thought that, on the basis of concentrations, ketamine causes similar inhibitory effect with thiopental in the CA secretion from the perfused rat adrenal medulla.

Effects of Endothelium on ${\alpha}_1$-and ${\alpha}_2$-adrenoceptor Agonist-induced Contraction in the Rat Isolated Aorta (흰쥐 적출 대동맥에서 ${\alpha}_1$-수용체 효능약과 ${\alpha}_2$-수용체 효능약의 혈관수축반응에 대한 내피세포의 영향)

  • Chung, Joon-Ki;Hong, Sung-Cheul;Choi, Su-Kyung;Kang, Maeng-Hee;Ku, Mi-Geong;Park, Sang-Il;Yun, Il
    • YAKHAK HOEJI
    • /
    • v.34 no.3
    • /
    • pp.180-191
    • /
    • 1990
  • A comparison was made of the effects of selective ${\alpha_1}-adrenoceptor$ agonist phenylephrine and selective ${\alpha_2}-adrenoceptor$ agonist clonidine on endothelium-containing and endothelium-denuded rings of the rat aorta. In the case of phenylephrine, removal of endothelium increased sensitivity 2.5 fold at $EC_{50}$ level and maximum contractive response 1.4 fold. In the case of clonidine, which gave only 15% of maximum contractive response given to phenylephrine on endothelium-containing rings, removal of the endothelium increased sensitivity 5.6 fold at $EC_{50}$ level and maximum contractive response 5 fold, which was about 55% of that given by phenylephrine. In endothelium-denuded ring, phenylephrine-induced contraction tended to be more increased in tonic contraction than in phasic contraction as compared to that in endothelium-containing ring, while clonidine-induced contraction was monophasic and was increased only in tonic contraction. In the calcium-free solution or in the presence, of verapamil, contraction stimulated by clonidine was almost abolished while that stimulated by phenylephrine produced only phasic contraction. The depression of sensitivity to these agonists in rings with endothelium appeared to be due to the vasodepressor action of endothelium derived relaxing factor (EDRF), because hemoglobin, a specific blocking agent of EDRF, abolished this depression. It is unlikely that the endothelium-dependent relaxation was due to stimulation of release of EDRF, because clonidine did not produce endothelium-dependent relaxation in 5-hydroxytryptamine-precontracted ring even when its contractile action was blocked by the ${\alpha_1}-adrenoceptor$ antagonist, prazosin. When the efficacy of phenylephrine was reduced to about the initial efficacy of clonidine by pretreatment with dibenamine, the contraction-response curves for phenylephrine became very similar to the corresponding curves obtained for clonidine before receptor inactivation. In the dibenamine-treated rings, contraction of phenylephrine was abolished in calcium-free solution or in the presence of verapamil like that obtained for clonidine before receptor inactivation. These results suggest that EDRF spontaneously released from endothelium depress contraction more profoundly in a case of an agonist with low efficacy and the phenylephrine-induced contraction was totally dependent on extracellular calcium as was that obtained for clonidine when the efficacy of phenylephrine was reduced to that of clonidine by irreversible inactivation of ${\alpha_1}-adrenoceptor$ with dibenamine.

  • PDF

Electrical Characteristics of Triple-Gate RSO Power MOSFET (TGRMOS) with Various Gate Configurations and Bias Conditions

  • Na, Kyoung Il;Won, Jongil;Koo, Jin-Gun;Kim, Sang Gi;Kim, Jongdae;Yang, Yil Suk;Lee, Jin Ho
    • ETRI Journal
    • /
    • v.35 no.3
    • /
    • pp.425-430
    • /
    • 2013
  • In this paper, we propose a triple-gate trench power MOSFET (TGRMOS) that is made through a modified RESURF stepped oxide (RSO) process, that is, the nitride_RSO process. The electrical characteristics of TGRMOSs, such as the blocking voltage ($BV_{DS}$) and on-state current ($I_{D,MAX}$), are strongly dependent on the gate configuration and its bias condition. In the nitride_RSO process, the thick single insulation layer ($SiO_2$) of a conventional RSO power MOSFET is changed to a multilayered insulator ($SiO_2/SiN_x/TEOS$). The inserted $SiN_x$ layer can create the selective etching of the TEOS layer between the gate oxide and poly-Si layers. After additional oxidation and the poly-Si filling processes, the gates are automatically separated into three parts. Moreover, to confirm the variation in the electrical properties of TGRMOSs, such as $BV_{DS}$ and $I_{D,MAX}$, simulation studies are performed on the function of the gate configurations and their bias conditions. $BV_{DS}$ and $I_{D,MAX}$ are controlled from 87 V to 152 V and from 0.14 mA to 0.24 mA at a 15-V gate voltage. This $I_{D,MAX}$ variation indicates the specific on-resistance modulation.

Selonsertib Inhibits Liver Fibrosis via Downregulation of ASK1/MAPK Pathway of Hepatic Stellate Cells

  • Yoon, Young-Chan;Fang, Zhenghuan;Lee, Ji Eun;Park, Jung Hee;Ryu, Ji-Kan;Jung, Kyung Hee;Hong, Soon-Sun
    • Biomolecules & Therapeutics
    • /
    • v.28 no.6
    • /
    • pp.527-536
    • /
    • 2020
  • Liver fibrosis constitutes a significant health problem worldwide due to its rapidly increasing prevalence and the absence of specific and effective treatments. Growing evidence suggests that apoptosis-signal regulating kinase 1 (ASK1) is activated in oxidative stress, which causes hepatic inflammation and apoptosis, leading to liver fibrogenesis through a mitogen-activated protein kinase (MAPK) downstream signals. In this study, we investigated whether selonsertib, a selective inhibitor of ASK1, shows therapeutic efficacy for liver fibrosis, and elucidated its mechanism of action in vivo and in vitro. As a result, selonsertib strongly suppressed the growth and proliferation of hepatic stellate cells (HSCs) and induced apoptosis by increasing Annexin V and TUNEL-positive cells. We also observed that selonsertib inhibited the ASK1/MAPK pathway, including p38 and c-Jun N-terminal kinase (JNK) in HSCs. Interestingly, dimethylnitrosamine (DMN)-induced liver fibrosis was significantly alleviated by selonsertib treatment in rats. Furthermore, selonsertib reduced collagen deposition and the expression of extracellular components such as α-smooth muscle actin (α-SMA), fibronectin, and collagen type I in vitro and in vivo. Taken together, selonsertib suppressed fibrotic response such as HSC proliferation and extracellular matrix components by blocking the ASK1/MAPK pathway. Therefore, we suggest that selonsertib may be an effective therapeutic drug for ameliorating liver fibrosis.

Magnolol Inhibits iNOS, p38 Kinase, and NF-κB/Rel in Murine Macrophages

  • Li Mei Hong;Chang In-Youp;Youn Ho-Jin;Jang Dae-Sik;Kim Jin-Sook;Jeon Young-Jin
    • Toxicological Research
    • /
    • v.22 no.3
    • /
    • pp.293-299
    • /
    • 2006
  • We demonstrate that magnolol, a hydroxylated biphenyl compound isolated from Magnolia officinalis, inhibits LPS-induced expression of iNOS gene in RAW 264.7 cells(murine macrophage cell line). Treatment of RAW 264.7 cells with magnolol inhibited LPS-stimulated nitric oxide production in a dose-related manner. RT-PCR analysis showed that the decrease of NO was due to the inhibition of iNOS gene expression. Western immunoblot analysis of phosphorylate p38 kinase showed magnolol significantly inhibited the phosphorylation of p38 kinase which is important in the regulation of iNOS gene expression. The specific p38 inhibiter SB203580 abrogated the LPS-induced NO generation and iNOS expression, whereas the selective MEK-1 inhibitor PD98059 did not affect the NO induction. Immunostaining of p65 and reporter gene assay showed that magnolol inhibited NF-${\kappa}/Rel$ nuclear translocation and transcriptional activation, respectively. Collectively, this series of experiments indicates that magnolol inhibits iNOS gene expression by blocking NF-k/Rel and p38 kinase signaling. Due to the critical role that NO release plays in mediating inflammatory responses, the inhibitory effects of magnolol or iNOS suggest that magnolol may represent a useful anti-inflammatory agent.

Interacting network of Hippo, Wnt/β-catenin and Notch signaling represses liver tumor formation

  • Kim, Wantae;Khan, Sanjoy Kumar;Yang, Yingzi
    • BMB Reports
    • /
    • v.50 no.1
    • /
    • pp.1-2
    • /
    • 2017
  • Acquiring a selective growth advantage by breaking the proliferation barrier established by gatekeeper genes is a centrally important event in tumor formation. Removal of the mammalian Hippo kinase Mst1 and Mst2 in hepatocytes leads to rapid hepatocellular carcinoma (HCC) formation, indicating that the Hippo signaling pathway is a critical gatekeeper that restrains abnormal growth in hepatocytes. By rigorous genetic approaches, we identified an interacting network of the Hippo, Wnt/${\beta}$-catenin and Notch signaling pathways that control organ size and HCC development. We found that in hepatocytes, the loss of Mst1/2 leads to the activation of Notch signaling, which forms a positive feedback loop with Yap/Taz (transcription factors controlled by Mst1/2). This positive feedback loop results in severe liver enlargement and rapid HCC formation. Blocking the Yap/Taz-Notch positive feedback loop by Notch inhibition in vivo significantly reduced the Yap/Taz activities, hepatocyte proliferation and tumor formation. Furthermore, we uncovered a surprising inhibitory role of Wnt/${\beta}$-catenin signaling to Yap/Taz activities, which are important in tumor initiation. Genetic removal of ${\beta}$-catenin in the liver of the Mst1/2 mutants significantly accelerates tumoriogenesis. Therefore, Wnt/${\beta}$-catenin signaling, known for its oncogenic property, exerts an unexpected function in restricting Yap/Taz and Notch activities in HCC initiation. The molecular interplay between the three signaling pathways identified in our study provides new insights in developing novel therapeutic strategies to treat liver tumors.