• Title/Summary/Keyword: Selective Assembly

Search Result 66, Processing Time 0.024 seconds

A Preliminary Study for Quantifying Appearance Assessment of Assembly Seam Gaps - Case Study of Drawer Assembly (조립품 심(seam)의 갭(gap)에 대한 정량적 심미평가의 기초연구 - 서랍장을 대상으로 한 사례연구)

  • Lee, Hae-Seung;Lee, Rae-Woo;Yim, Hyun-June
    • Korean Journal of Computational Design and Engineering
    • /
    • v.16 no.5
    • /
    • pp.380-389
    • /
    • 2011
  • Esthetic appeal of a product is often affected by the appearance quality of seams forming between components of the product. The appearance quality of seams is, however, assessed in a very subjective and qualitative manner that heavily depends on the evaluator. This paper presents a preliminary study to quantify such assessment by formulating a quantitative index which is a linear function of the seam gap sizes, seam gap ranges, and the size uniformity of seam gaps. By considering a highly simplified problem of a drawer system and utilizing subjective assessments by twenty evaluators, the index has been formulated. The validity of this index has been confirmed by observing its behavior with changes of the component tolerances. Also, the utility of this index has been demonstrated through a selective assembly scheme applied to the drawer system problem. Though the index formulated in this study for seam appearance quality may be useful, future studies are necessary to make the model readily applicable to real problems.

Order-to-disorder Behavior of Block Copolymer Films

  • Ryu, Du-Yeol;Kim, Eun-Hye;Choe, Seung-Hun
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.6.2-6.2
    • /
    • 2011
  • Block copolymer (BCP) self-assembly in a film geometry has recently been the focus of increased research interest due to their potential use as templates and scaffolds for the fabrication of nanostructured materials. The phase behavior in a thin film geometry that confines polymer chains to the interfaces will be influenced by the interfacial interactions at substrate/polymer and polymer/air and the commensurability between the equilibrium period (L0) of the BCP and the total film thickness. We investigated the phase transitions for the films of block copolymers (BCPs) on the modified surface, like the order-to-disorder transition (ODT) by in-situ grazing incidence small angle x-ray scattering (GISAXS) and transmission electron microscopy (TEM). The selective interactions on the surface by a PS-grafted substrate provide the preferential interactions with the PS component of the block, while a random copolymer (PS-r-PMMA) grafted substrate do the balanced interfacial interactions on the surface. The thickness dependence of order-to-disorder behavior for BCP films will be discussed in terms of the surface interactions.

  • PDF

Fabrication and Characterisation of a Novel Pellicular Adsorbent Customised for the Effectvie Fluidised Bed Adsorption of Protein Products

  • Sun, Yam;Pacek, Andrzej W.;Nienow, Alvin W.;Lyddiatt, Andrew
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.6 no.6
    • /
    • pp.419-425
    • /
    • 2001
  • A dense pellicular solid matrix has been fabricated by coating 4% agarose gel on to dense zironia-silica(ZS) spheres by watr-in-oil emulsification . The agarose evenly laminated the ZS bead to a depth of 30㎛, and the resultin gpellicular assembly was characterised by densities up to 2.39g/mL and a mean particle dimeter of 136 ㎛. In comparative fluidisation tests, the pellicular solid phase exhibited a two-fold greater flow velocity than commercial benchmark ad-sorbents necessary to achieve common values of bed expansion. Furthermore, the perlicular parti-cles were characterised by improved qualities of chromatographic behaviour, particularly with re-spect to a three-fold increase in the apparent effective diffusivity of lysozyme within a pellicular assembly modified with Cibacron Blue 3GA. The properties of rapid protein adsorption/desorp-tion were attributed to the physical design and pellicular deployment of the reactive surface in the solid phase. When combined with enhanced feedstock throughput, such practical advantages recommend the pellicular assembly as a base matrix for the selective recovery of protein products from complex, particulate feedstocks(whole fermentation broths, cell disruptates and biological extracts).

  • PDF

Industry 4.0 - A challenge for variation simulation tools for mechanical assemblies

  • Boorla, Srinivasa M.;Bjarklev, Kristian;Eifler, Tobias;Howard, Thomas J.;McMahon, Christopher A.
    • Advances in Computational Design
    • /
    • v.4 no.1
    • /
    • pp.43-52
    • /
    • 2019
  • Variation Analysis (VA) is used to simulate final product variation, taking into consideration part manufacturing and assembly variations. In VA, all the manufacturing and assembly processes are defined at the product design stage. Process Capability Data Bases (PCDB) provide information about measured variation from previous products and processes and allow the designer to apply this to the new product. A new challenge to this traditional approach is posed by the Industry 4.0 (I4.0) revolution, where Smart Manufacturing (SM) is applied. The manufacturing intelligence and adaptability characteristics of SM make present PCDBs obsolete. Current tolerance analysis methods, which are made for discrete assembly products, are also challenged. This paper discusses the differences expected in future factories relevant to VA, and the approaches required to meet this challenge. Current processes are mapped using I4.0 philosophy and gaps are analysed for potential approaches for tolerance analysis tools. Matching points of simulation capability and I4.0 intents are identified as opportunities. Applying conditional variations, incorporating levels of adjustability, and the un-suitability of present Monte Carlo simulation due to changed mass production characteristics, are considered as major challenges. Opportunities including predicting residual stresses in the final product and linking them to product deterioration, calculating non-dimensional performances and extending simulations for process manufactured products, such as drugs, food products etc. are additional winning aspects for next generation VA tools.

Selective Band Engineering of an Isolated Subnanometer Wire

  • Song, In-Gyeong;Park, Jong-Yun;An, Jong-Ryeol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.267-267
    • /
    • 2013
  • Band engineering of a nanowire is related to the question what is the minimum size of a nanowire-based device. At the subnanometer scale, there has been a long standing problem whether it is possible to both control an energy band of an isolated nanowire by a dopant and measure it using angle-resolved photoemission spectroscopy (ARPES). This is because an extra atom in the subnanometer wire plays as a defect rather than a dopant and it is challenging to assemble isolated subnanometer wires into an array for an ARPES measurement. We demonstrate that only one of multiple metallic subnanometer wires canbe controlled electronically by a dopant maintaining the whole metallic bands of other wires, which was observed directly by ARPES. Here,the multiple metallic subnanometer wires were produced on a stepped Si(111) surface by a self-assembly method. The selective band engineering proves that the selectively-controlled metallic wire is nearly isolated electronically from other metallic wires and an electronic structure controlcan be realized down to subnanometer scale.

  • PDF

Programmed APTES and OTS Patterns for the Multi-Channel FET of Single-Walled Carbon Nanotubes (SWCNT 다중채널 FET용 표면 프로그램된 APTES와 OTS 패턴을 이용한 공정에 대한 연구)

  • Kim, Byung-Cheul;Kim, Joo-Yeon;An, Ho-Myoung
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.8 no.1
    • /
    • pp.37-44
    • /
    • 2015
  • In this paper, we have investigated a selective assembly method of single-walled carbon nanotubes (SWCNTs) on a silicon substrate using only photolithographic process and then proposed a fabrication method of field effect transistors (FETs) using SWCNT-based patterns. The aminopropylethoxysilane (APTES) patterns, which are formed for positively charged surface molecular patterns, are utilized to assemble and align millions of SWCNTs and we can more effectively assemble on a silicon (Si) surface using this method than assembly processes using only the 1-octadecyltrichlorosilane (OTS). We investigated a selective assembly method of SWCNTs on a Si surface using surface-programmed APTES and OTS patterns and then a fabrication method of FETs. photoresist(PR) patterns were made using photolithographic process on the silicon dioxide (SiO2) grown Si substrate and the substrate was placed in the OTS solution (1:500 v/v in anhydrous hexane) to cover the bare SiO2 regions. After removing the PR, the substrate was placed in APTES solution to backfill the remaining SiO2 area. This surface-programmed substrate was placed into a SWCNT solution dispersed in dichlorobenzene. SWCNTs were attracted toward the positively charged molecular regions, and aligned along the APTES patterns. On the contrary, SWCNT were not assembled on the OTS patterns. In this process, positively charged surface molecular patterns are utilized to direct the assembly of negatively charged SWCNT on SiO2. As a result, the selectively assembled SWCNT channels can be obtained between two electrodes(source and drain electrodes). Finally, we can successfully fabricate SWCNT-based multi-channel FETs by using our self-assembled monolayer method.

Implementation of ROS-Based Intelligent Unmanned Delivery Robot System (ROS 기반 지능형 무인 배송 로봇 시스템의 구현)

  • Seong-Jin Kong;Won-Chang Lee
    • Journal of IKEEE
    • /
    • v.27 no.4
    • /
    • pp.610-616
    • /
    • 2023
  • In this paper, we implement an unmanned delivery robot system with Robot Operating System(ROS)-based mobile manipulator, and introduce the technologies employed for the system implementation. The robot consists of a mobile robot capable of autonomous navigation inside the building using an elevator and a Selective Compliance Assembly Robot Arm(SCARA)-Type manipulator equipped with a vacuum pump. The robot can determines the position and orientation for picking up a package through image segmentation and corner detection using the camera on the manipulator. The proposed system has a user interface implemented to check the delivery status and determine the real-time location of the robot through a web server linked to the application and ROS, and recognizes the shipment and address at the delivery station through You Only Look Once(YOLO) and Optical Character Recognition(OCR). The effectiveness of the system is validated through delivery experiments conducted within a 4-story building.

A Study on the Total, Particle Size-Selective Mass Concentration of Airborne Manganese, and Blood Manganese Concentration of Welders in a Shipbuilding Yard (조선업 용접작업자의 공기 중 총 망간 및 입경별 망간 농도와 혈중 망간농도에 관한 연구)

  • Park, Jong Su;Kim, Pan Gyi;Jeong, Jee Yeon
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.25 no.4
    • /
    • pp.472-481
    • /
    • 2015
  • Objectives: Welding is a major task in shipbuilding yards that generates welding fumes. A significant amount of welding in shipbuilding yards is done on steel. Inevitably, manganese is present in the base metals being joined and the filler wire being used and, consequently, in the fumes to which workers are exposed. The objective of this work was to characterize manganese exposure associated with work area, total and particle size-selective mass concentration, and compare the mass concentrations obtained using a three-piece cassette sampler, size-selective impactor sampler and blood manganese concentrations. Materials: All samples were collected from the main work areas at one shipbuilding yard. We used a three piece cassette sampler and the eight stage cascade impactor sampler for the airborne manganese mass concentration of total and all size fractions, respectively. In addition, we used the results of health examination of workers sampled for airborne manganese. Results: The oder of high concentration of airborne manganese in shipbuilding processes was as follows; block assembly, block erection, outfitting installation, steel cutting, and outfitting preparation. The percentages of samples that exceeded the OES of the ministry of employment and labor by the cassette sampling method was 12.5%, however 59.1% of sampled workers by the impactor sampling method exceeded the TLV of the ACGIH. Conclusions: Even though the manganese concentrations in blood of workers exposed to higher airborne manganese concentration were higher than among those exposed to lower concentrations, there was no difference in blood manganese concentrations among work duration. The data analyzed here by characterizing size-selective mass concentrations indicates that the inhaled manganese of welders in shipbuilding yards could be mostly manganese-containing respirable particle sizes.

Growth of Silicon-Germanium Quantum-dots Through Local Enhancement of Surface Diffusivity (표면확산계수의 국소적 향상을 통한 실리콘-게르마늄 양자점의 성장)

  • Kim, Yun Young
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.7
    • /
    • pp.653-657
    • /
    • 2015
  • A numerical investigation to simulate the selective growth of silicon-germanium quantum-dots via local surface diffusivity enhancement is presented. A nonlinear equation for the waviness evolution of film surface is derived to consider the effects of spatially-varying diffusivity, influenced by a surface temperature profile. Results show that the morphology of the initially planar film shapes into an undulated surface upon perturbation, and a steady-state solution describes a fully grown quantum-dot. The present study points toward a fabrication technique that can obtain selectivity for self-assembly.