• Title/Summary/Keyword: Seismic wave

Search Result 764, Processing Time 0.036 seconds

High Resolution Seismic Reflection Method Using S-Waves: Case Histories for Ultrashallow Bedrocks (S파를 이용한 고해상도 탄성파 반사법 탐사: 지반표층부에 대한 적용사례)

  • Kim Sung-Woo;Woo Ki-Han;Han Myung-Ja;Jang Hae-Dong;Choi Yong-Kyu;Kong Young-Sae
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.4
    • /
    • pp.41-49
    • /
    • 2006
  • This paper demonstrates the feasibility of using shallow S-wave, high-resolution seismic reflection surveys to characterize geological structure and stratigraphy of basement rocks for civil engineering purposes. S-wave seismic reflections from depths less than 20 m were recorded along the top of steep readout slopes. Seismic reflection data were recorded using a standard CDP acquisition method with a 24-channel seismograph and a sledge-hammer SH-wave source. The data were acquired using a split-spread source-receiver geometry with a 2 m shot-and-receiver interval, and then were processed to enhance S/N ratio of the data, to improve resolvable power of the seismic section, and to get velocity information of the basement rock. The final seismic reflection profiles using the CDP technique has imaged surfaces as shallow as less than 1m and resolved beds as thin as 1m. The migrated reflection sections possess sufficient quality to correlate the prominent reflection events to the bedding planes and faults identified on the readout outcrops. Similar S-wave reflection surveys could also be used to produce the necessary details of a geological structure of shallow bedrocks to pinpoint optimum locations for monitor wells of civil engineering purposes.

Wave shape analysis of seismic records at borehole of TTRH02 and IWTH25 (KiK-net)

  • Kamagata, Shuichi
    • Earthquakes and Structures
    • /
    • v.18 no.3
    • /
    • pp.297-312
    • /
    • 2020
  • The KiK-net by NIED is a vertical array measurement system. In the database of KiK-net, singular pulse waves were observed in the seismic record at the borehole of TTRH02 during the mainshock (the magnitude of Japan Meteorological Agency (MJ) 7.3, MW 6.8) and aftershock (Mj 4.2) of Tottori-ken Seibu earthquake in 2000. Singular pulse waves were also detected in the seismic records at the borehole of IWTH25 during the Iwate-Miyagi Nairiku earthquake in 2008 (MJ 7.2, MW 6.9). These pulse waves are investigated by using the wave shape analysis methods, e.g., the non-stationary Fourier spectra and the double integrated displacement profiles. Two types of vibration modes are discriminated as the occurrence mechanism of the singular pulse waves. One corresponds to the reversal points in the displacement profile with the amplitude from 10-4 m to 10-1 m, which is mainly related to the fault activity and the amplification pass including the mechanical amplification (collision) of the seismograph in the casing pipe. The other is the cyclic pulse waves in the interval of reversal points, which is estimated as the backlash of the seismograph itself with the amplitude from 10-5 m to 10-4 m.

Probabilistic Q-system for rock classification considering shear wave propagation in jointed rock mass

  • Kim, Ji-Won;Chong, Song-Hun;Cho, Gye-Chun
    • Geomechanics and Engineering
    • /
    • v.30 no.5
    • /
    • pp.449-460
    • /
    • 2022
  • Safe underground construction in a rock mass requires adequate ground investigation and effective determination of rock conditions. The estimation of rock mass behavior is difficult, because rock masses are innately anisotropic and heterogeneous at different scales and are affected by various environmental factors. Quantitative rock mass classification systems, such as the Q-system and rock mass rating, are widely used for characterization and engineering design. The measurement of rock classification parameters is subjective and can vary among observers, resulting in questionable accuracy. Geophysical investigation methods, such as seismic surveys, have also been used for ground characterization. Torsional shear wave propagation characteristics in cylindrical rods are equal to that in an infinite media. A probabilistic quantitative relationship between the Q-value and shear wave velocity is thus investigated considering long-wavelength wave propagation in equivalent continuum jointed rock masses. Individual Q-system parameters are correlated with stress-dependent shear wave velocities in jointed rocks using experimental and numerical methods. The relationship between the Q-value and the shear wave velocity is normalized using a defined reference condition. This relationship is further improved using probabilistic analysis to remove unrealistic data and to suggest a range of Q-values for a given wave velocity. The proposed probabilistic Q-value estimation is then compared with field measurements and cross-hole seismic test data to verify its applicability.

Experimental study on Chinese ancient timber-frame building by shaking table test

  • Zhang, Xi-Cheng;Xue, Jian-Yang;Zhao, Hong-Tie;Sui, Yan
    • Structural Engineering and Mechanics
    • /
    • v.40 no.4
    • /
    • pp.453-469
    • /
    • 2011
  • A one-story, wooden-frame, intermediate-bay model with Dou-Gon designed according to the Building Standards of the Song Dynasty (A.D.960-1279), was tested on a unidirectional shaking table. The main objectives of this experimental study were to investigate the seismic performance of Chinese historic wooden structure under various base input intensities. El Centro wave (N-S), Taft wave and Lanzhou wave were selected as input excitations. 27 seismic geophones were instrumented to measure the real-time displacement, velocity and acceleration respectively. Dynamic characteristics, failure mode and hysteretic energy dissipation performance of the model are analyzed. Test results indicate that the nature period and damping ratio of the model increase with the increasing magnitude of earthquake excitation. The nature period of the model is within 0.5~0.6 s, the damping ratio is 3~4%. The maximum acceleration dynamic magnification factor is less than 1 and decreases as the input seismic power increases. The frictional slippage of Dou-Gon layers (corbel brackets) between beams and plates dissipates a certain amount of seismic energy, and so does the slippage between posts and plinths. The mortise-tenon joint of the timber frame dissipates most of the seismic energy. Therefore, it plays a significant part in shock absorption and isolation.

Influence of Predominant Periods of Seismic Waves on a High-rise Building in SSI Dynamic Analyses with the Complete System Model (연속체 모델에 기초한 SSI 동적해석 시 지진파 탁월주기가 초고층 건물에 미치는 영향)

  • You, Kwangho;Kim, Juhyong;Kim, Seungjin
    • Journal of the Korean GEO-environmental Society
    • /
    • v.20 no.12
    • /
    • pp.5-14
    • /
    • 2019
  • Recently in Korea, researches on seismic analyses for high-rise buildings in a large city have been increasing because earthquakes have occurred. However, the ground conditions are not included in most of seismic researches and analyses on a high-rise building. Also the influence of the predominant period of a seismic wave is not considered in reality. Therefore, in this study, the influence of the predominant period of a seismic wave on the dynamic behavior of high-rise buildings was analyzed based on the complete system model which can consider the grounds. For this purpose, 2D dynamic analyses based on a linear time history analysis were performed using MIDAS GTS NX, a finite-element based program. Dynamic behavior was analyzed in terms of horizontal displacements, drift ratios, bending stresses, and building weak zones. As a result, in overall, the dynamic response of a high-rise building become bigger as the predominant period of a seismic wave become longer. It was also found that the predominant period had a greater influence than other parameters, ground conditions and peak ground acceleration.

The Analysis of Dynamic Behavior of Concrete Gravity Dam (중력식콘크리트댐의 동적거동분석)

  • 임정열;이종욱;오병현
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2001.09a
    • /
    • pp.155-162
    • /
    • 2001
  • In this study, it was performed that the seismic response analysis using long period earthquake wave and short period earthquake wave on dynamic behavior of concrete gravity dam. The results showed that if the same magnitude earthquake waves acted on concrete dam, the maximum displacement and stress at dam crest of long period wave(0funato wave) were about 30 % larger than those of short period wave(Hachinohe wave). And the response acceleration of dam crest was amplified about 5 times in long period earthquake wave and about 3 times in short period earthquake wave.

  • PDF

Amplification based on shear wave velocity for seismic zonation: comparison of empirical relations and site response results for shallow engineering bedrock sites

  • Anbazhagan, P.;Aditya, Parihar;Rashmi, H.N.
    • Geomechanics and Engineering
    • /
    • v.3 no.3
    • /
    • pp.189-206
    • /
    • 2011
  • Amplification based on empirical relations is widely used for seismic microzonation of urban centers. Amplifications are used to represent the site effects of a particular soil column. Many empirical correlations are available to estimate the amplification of seismic waves. These correlations are based on the ratio of shear wave velocity of foundation/rock to soil velocity or 30 m equivalent shear wave velocity ($Vs^{30}$) and are developed considering deep soil data. The aim of this work is to examine the applicability of available amplification relations in the literature for shallow engineering bedrock sites by carrying out site response studies. Shear wave velocity of thirteen sites having shallow engineering bedrock have been selected for the study. In these locations, the depth of engineering bedrock (> 760 ${\pm}$ 60 m/s) is matched with the drilled bore hole. Shear wave velocity (SWV) has been measured using Multichannel Analysis of Surface Wave survey. These sites are classified according to the National Earthquake Hazards Reduction Program (NEHRP) classification system. Amplifications for an earthquake are arrived for these sites using empirical relations and measured SWV data. Site response analysis has been carried out in SHAKE using SWV and using synthetic and real earthquake data. Amplification from site response analysis and empirical relations are compared. Study shows that the amplification arrived using empirical relations does not match with the site response amplification. Site response amplification is much more than empirical values for same shear wave velocity.

A Study of the Dynamic Amplification Characteristics of the Domestic Seismic Observation Sites Using Coda Wave (Coda파를 이용한 국내 관측소지반의 동적 증폭특성에 관한 연구)

  • Kim, Junkyoung;Lee, Jundae
    • Journal of the Korean GEO-environmental Society
    • /
    • v.10 no.7
    • /
    • pp.135-141
    • /
    • 2009
  • For more reliable estimation of soil-structure interaction and seismic source and attenuation properties, site amplification function should be considered. This study use the Nakamura's method (1989) for estimating site amplification though various methods for the same purpose have been proposed. This method was originally applied to the surface waves of background noise and therefore there are some limitation for applications to general wave energy. However, recently this method has been extended and applied to the S wave energy successfully. This study applied the method to the coda wave energy which is equivalent to the backscattered S wave energy. We used more than 60 observed ground motions from 5 earthquakes which occurred recently, with magnitude range from 3.6 to 5.1 Each station showed characteristic site amplification property in low-, high- and resonance frequency ranges. In the case of comparing these results to those from S wave energy, lots of information to the site classification work can be gained. Moreover, removal of site amplification can give us more reliable seismic source parameters.

  • PDF

Correlating Undrained Shear Strength and Density of Silt with Shear Wave Velocity (실트의 비배수 전단강도 및 밀도와 전단파속도와의 상관관계)

  • Oh, Sang-Hoon;Park, Dong-Sun;Jung, Jae-Woo;Park, Chul-Soo;Mok, Young-Jin
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.5
    • /
    • pp.79-87
    • /
    • 2008
  • Recently, a new seismic probe, called "MudFork", has been developed and can be utilized for accurate and easy measurements of shear wave velocities of cohesive soils. To expand its use to estimate undrained shear strength and density, a preliminary investigation to correlate these properties with shear wave velocity was attempted. Cone penetration tests and a seismic test, using MudFork, were performed at a silty soil site near Incheon, Korea. Also, undisturbed samples were obtained using thin-wall tube samplers, and the shear wave velocities and undrained shear strengths of the samples were measured in the laboratory. A simple linear relationship between shear strength and shear wave velocity was obtained, and a tentative relationship between density and shear wave velocity was also defined.

Viaduct seismic response under spatial variable ground motion considering site conditions

  • Derbal, Rachid;Benmansour, Nassima;Djafour, Mustapha;Matallah, Mohammed;Ivorra, Salvador
    • Earthquakes and Structures
    • /
    • v.17 no.6
    • /
    • pp.557-566
    • /
    • 2019
  • The evaluation of the seismic hazard for a given site is to estimate the seismic ground motion at the surface. This is the result of the combination of the action of the seismic source, which generates seismic waves, the propagation of these waves between the source and the site, and site local conditions. The aim of this work is to evaluate the sensitivity of dynamic response of extended structures to spatial variable ground motions (SVGM). All factors of spatial variability of ground motion are considered, especially local site effect. In this paper, a method is presented to simulate spatially varying earthquake ground motions. The scheme for generating spatially varying ground motions is established for spatial locations on the ground surface with varying site conditions. In this proposed method, two steps are necessary. Firstly, the base rock motions are assumed to have the same intensity and are modelled with a filtered Tajimi-Kanai power spectral density function. An empirical coherency loss model is used to define spatial variable seismic ground motions at the base rock. In the second step, power spectral density function of ground motion on surface is derived by considering site amplification effect based on the one dimensional seismic wave propagation theory. Several dynamics analysis of a curved viaduct to various cases of spatially varying seismic ground motions are performed. For comparison, responses to uniform ground motion, to spatial ground motions without considering local site effect, to spatial ground motions with considering coherency loss, phase delay and local site effects are also calculated. The results showed that the generated seismic signals are strongly conditioned by the local site effect. In the same sense, the dynamic response of the viaduct is very sensitive of the variation of local geological conditions of the site. The effect of neglecting local site effect in dynamic analysis gives rise to a significant underestimation of the seismic demand of the structure.