• 제목/요약/키워드: Seismic strengthening

검색결과 214건 처리시간 0.023초

사회기반설물의 내진 보강을 위한 연성재-FRP적층복합체의 역학적 거동 특성 분석: Part-II휨 거동 (Characterization of Ductile Metal-FRP Laminated Composites for Strengthening of Structures: Part-II Tensile Behavior)

  • 박철우
    • 한국안전학회지
    • /
    • 제27권1호
    • /
    • pp.55-62
    • /
    • 2012
  • Steel plate or FRP materials have been typically used for the seismic retrofit of civil infrastructures. In order to overcome the limitation of each retrofitting material, a composite material, which takes advantages from both metal and fiber polymer materials, has been developed. In the study herein, the composite retrofitting material consists of metal part(steel or aluminum) and FRP sheet part(glass or carbon fiber). The metal part can enhance the ductility and the FRP part the ultimate strength. As a preliminary study to investigate the fundamental mechanical characteristics of the metal-FRP laminated composite material this study performed the flexural fracture test with various experimental variables including the number, the angle and the combination of FRP laminates. From the aluminum-FRP composite tests no great increase in flexural strength and flexural toughness were observed. However, flexural toughness of steel-FRP laminate composite was increased so that its behavior can be considered in the retrofit design. In addition, the angle and the kind of fibers should be carefully considered in conjunction with the expected loading conditions.

Seismic behavior of reinforced concrete exterior beam-column joints strengthened by ferrocement composites

  • Li, Bo;Lam, Eddie Siu-shu;Wu, Bo;Wang, Ya-yong
    • Earthquakes and Structures
    • /
    • 제9권1호
    • /
    • pp.233-256
    • /
    • 2015
  • This paper presents an experimental study to assess the effectiveness of using ferrocement to strengthen deficient beam-column joints. Ferrocement is proposed to protect the joint region through replacing concrete cover. Six exterior beam-column joints, including two control specimens and four strengthened specimens, are prepared and tested under constant axial load and quasi-static cyclic loading. Two levels of axial load on column (0.2fc'Ag and 0.4fc'Ag) and two types of skeletal reinforcements in ferrocement (grid reinforcements and diagonal reinforcements) are considered as test variables. Experimental results have indicated that ferrocement as a composite material can enhance the seismic performance of deficient beam-column joints in terms of peak horizontal load, energy dissipation, stiffness and joint shear strength. Shear distortions within the joints are significantly reduced for the strengthened specimens. High axial load (0.4fc'Ag) has a detrimental effect on peak horizontal load for both control and ferrocement-strengthened specimens. Specimens strengthened by ferrocement with two types of skeletal reinforcements perform similarly. Finally, a method is proposed to predict shear strength of beam-column joints strengthened by ferrocement.

Computational methodology to determine the strength of reinforced concrete joint

  • Sasmal, Saptarshi;Vishnu Pradeesh, L.;Devi, A. Kanchana;Ramanjaneyulu, K.
    • Advances in Computational Design
    • /
    • 제1권1호
    • /
    • pp.61-77
    • /
    • 2016
  • Seismic performance of structures depends on the force flow mechanism inside the structure. Discontinuity regions, like beam-column joints, are often affected during earthquake event due to the complex and discontinuous load paths. The evaluation of shear strength and identification of failure mode of the joint region are helpful to (i) define the strength hierarchy of the beam-column sub-assemblage, (ii) quantify the influence of different parameters on the behaviour of beam-column joint and, (iii) develop suitable and adequate strengthening scheme for the joints, if required, to obtain the desired strength hierarchy. In view of this, it is very important to estimate the joint shear strength and identify the failure modes of the joint region as it is the most critical part in any beam-column sub-assemblage. One of the most effective models is softened strut and tie model which was developed by incorporating force equilibrium, strain compatibility and constitutive laws of cracked reinforced concrete. In this study, softened strut and tie model, which incorporates force equilibrium equations, compatibility conditions and material constitutive relation of the cracked concrete, are used to simulate the shear strength behaviour and to identify failure mechanisms of the beam-column joints. The observations of the present study will be helpful to arrive at the design strategy of the joints to ensure the desired failure mechanism and strength hierarchy to achieve sustainability of structural systems under seismic loading.

부착형 복합소재를 이용한 교육시설의 내진보강 (Seismic Retrofit in Educational Facilities Using Attaching Composite Material)

  • 박춘욱;송건수;박익현;김동휘
    • 한국공간구조학회논문집
    • /
    • 제13권3호
    • /
    • pp.73-81
    • /
    • 2013
  • In paper after the strong earthquake of recently the Korea neighborhood, the Korean government survey show that the 86% of school buildings in Korea are in potential damage risk and only 14% of them are designed as earthquake-resistance buildings. Earthquake Reinforcing projects of school have been a leading by the ministry of education, however their reinforcing methods done by not proved a engineering by experiment which results in uneconomical and uneffective rehabilitation for the future earthquake. An experimental and analytical study have been conducted for the shear reinforcing method of column by axis and horizontal axis load using attaching composite beam. Based on the previous research, in this study, Design examples are given to show the performance evaluation for the column reinforcing of old school buildings using nonlinear analysis is going to be conducted and strengthening method is going to be on the market after their performance is proved by the test.

복합소재를 이용한 교육시설의 기둥 내진보강공법에 관한 연구 (A Study on the Seismic Retrofit of Column in Educational Facilities Using Composite Material)

  • 박춘욱;이형주;주치홍;홍원화
    • 교육시설 논문지
    • /
    • 제20권1호
    • /
    • pp.45-52
    • /
    • 2013
  • In paper after the strong earthquake of recently the Korea neighborhood, the Korean government survey show that the 86% of school buildings in Korea are in potential damage risk and only 14% of them are designed as earthquake-resistance buildings. Reinforcing projects of school have been conducting by the ministry of education, however their reinforcing methods done by not proved a engineering by experiment which results in uneconomical and uneffective rehabilitation for the future earthquake. An experimental and analytical study have been conducted for the shear and flexural reinforcing method of RC beam using composite beam. Based on the previous research, in this study, performance evaluation for the column reinforcing of old school buildings using nonlinear analysis is going to be conducted and strengthening method is going to be on the market after their performance is proved by the test.

Vault macro-element with equivalent trusses in global seismic analyses

  • Giresini, Linda;Sassu, Mauro;Butenweg, Christoph;Alecci, Valerio;De Stefano, Mario
    • Earthquakes and Structures
    • /
    • 제12권4호
    • /
    • pp.409-423
    • /
    • 2017
  • This paper proposes a quick and simplified method to describe masonry vaults in global seismic analyses of buildings. An equivalent macro-element constituted by a set of six trusses, two for each transverse, longitudinal and diagonal direction, is introduced. The equivalent trusses, whose stiffness is calculated by fully modeled vaults of different geometry, mechanical properties and boundary conditions, simulate the vault in both global analysis and local analysis, such as kinematic or rocking approaches. A parametric study was carried out to investigate the influence of geometrical characteristics and mechanical features on the equivalent stiffness values. The method was numerically validated by performing modal and transient analysis on a three naves-church in the elastic range. Vibration modes and displacement time-histories were compared showing satisfying agreement between the complete and the simplified models. This procedure is particularly useful in engineering practice because it allows to assess, in a simplified way, the effectiveness of strengthening interventions for reducing horizontal relative displacements between vault supports.

Investigations on the behaviour of corrosion damaged gravity load designed beam-column sub-assemblages under reverse cyclic loading

  • Kanchanadevi, A.;Ramanjaneyulu, K.
    • Earthquakes and Structures
    • /
    • 제16권2호
    • /
    • pp.235-251
    • /
    • 2019
  • Corrosion of reinforcement is the greatest threat to the safety of existing reinforced concrete (RC) structures. Most of the olden structures are gravity load designed (GLD) and are seismically deficient. In present study, investigations are carried out on corrosion damaged GLD beam-column sub-assemblages under reverse cyclic loading, in order to evaluate their seismic performance. Five GLD beam-column sub-assemblage specimens comprising of i) One uncorroded ii) Two corroded iii) One uncorroded strengthened with steel bracket and haunch iv) One corroded strengthened with steel bracket and haunch, are tested under reverse cyclic loading. The performances of these specimens are assessed in terms of hysteretic behaviour, energy dissipation and strength degradation. It is noted that the nature of corrosion i.e. uniform or pitting corrosion and its location have significant influence on the behaviour of corrosion damaged GLD beam-column sub-assemblages. The corroded specimens with localised corrosion pits showed in-cyclic strength degradation. The study also reveals that external strengthening which provides an alternate force path but depends on the strength of the existing reinforcement bars, is able to mitigate the seismic risk of corroded GLD beam-column sub-assemblages to the level of control uncorroded GLD specimen.

강재 댐퍼의 스트럿 형상과 높이에 따른 록킹 거동 (Rocking Behavior of Steel Dampers according to Strut Shapes and Heights of Steel dampers)

  • 이현호
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제23권4호
    • /
    • pp.45-52
    • /
    • 2019
  • 본 연구에서는 벽체의 록킹 거동을 고려한 내진보강 기법을 개발하였다. 록킹 거동은 벽체 수직 축을 중심으로 좌우로 회전하는 것으로, 개발 시스템은 변위 큰 부분에 댐퍼 등을 설치하여 에너지를 소산 시키는 방법이다. 댐퍼는 강재댐퍼를 사용하였으며, 스트럿 형상 및 높이를 변수로 선정하였다. 실험결과 스트럿 높이가 짧을수록 강도 능력이, 길수록 변형능력이 우수한 것으로 평가되었다. I형과 S형 스트럿 능력을 평가한 결과, S형이 우수한 내진 성능을 보유한 것으로 평가되었다.

Seismic behavior of RC frames with partially attached steel shear walls: A numerical study

  • Kambiz Cheraghi;Majid Darbandkohi;Mehrzad TahamouliRoudsari;Sasan Kiasat
    • Earthquakes and Structures
    • /
    • 제25권6호
    • /
    • pp.443-454
    • /
    • 2023
  • Steel shear walls are used to strengthen steel and concrete structures. One such system is Partial Attached Steel Shear Walls (PASSW), which are only connected to frame beams. This system offers both structural and architectural advantages. This study first calibrated the numerical model of RC frames with and without PASSW using an experimental sample. The seismic performance of the RC frame was evaluated by 30 non-linear static analyses, which considered stiffness, ductility, lateral strength, and energy dissipation, to investigate the effect of PASSW width and column axial load. Based on numerical results and a curve fitting technique, a lateral stiffness equation was developed for frames equipped with PASSW. The effect of the shear wall location on the concrete frame was evaluated through eight analyses. Nonlinear dynamic analysis was performed to investigate the effect of the shear wall on maximum frame displacement using three earthquake records. The results revealed that if PASSW is designed with appropriate stiffness, it can increase the energy dissipation and ductility of the frame by 2 and 1.2 times, respectively. The stiffness and strength of the frame are greatly influenced by PASSW, while axial force has the most significant negative impact on energy dissipation. Furthermore, the location of PASSW does not affect the frame's behavior, and it is possible to have large openings in the frame bay.

Out-of-plane performance of infill masonry walls reinforced with post-compressed wedges under lateral-concentrated push load

  • Sanghee Kim;Ju-Hyun Mun;Jun-Ryeol Park;Keun-Hyeok Yang;Jae-Il Sim
    • Earthquakes and Structures
    • /
    • 제26권6호
    • /
    • pp.489-499
    • /
    • 2024
  • Infill masonry walls are vulnerable to lateral loads, including seismic, wind, and concentrated push loads. Various strengthening metal fittings have been proposed to improve lateral load resistance, particularly against seismic loads. This study introduces the use of post-compressed wedges as a novel reinforcement method for infill masonry walls to enhance lateral load resistance. The resistance of the infill masonry wall against lateral-concentrated push loads was assessed using an out-of-plane push-over test on specimens sized 2,300×2,410×190 mm3. The presence or absence of wedges and wedge spacing were set as variables. The push-over test results showed that both the unreinforced specimen and the specimen reinforced with 300 mm spaced wedges toppled, while the specimen reinforced with 100 mm spaced wedges remained upright. Peak loads were measured to be 0.74, 29.77, and 5.88 kN for unreinforced specimens and specimens reinforced with 100 mm and 300 mm spaced wedges, respectively. Notably, a tighter reinforcement spacing yielded a similar strength, as expected, which was attributed to the increased friction force between the masonry wall and steel frame. The W-series specimens exhibited a trend comparable to that of the displacement ductility ratio. Overall, the findings validate that post-compressed wedges improve the out-of-plane strength of infill masonry walls.