• 제목/요약/키워드: Seismic stability

검색결과 367건 처리시간 0.029초

SSI를 이용한 건물과 인접지하구조물의 내진 안정성에 대한 기초 수치해석 연구 (A preliminary numerical analysis study on the seismic stability of a building and underground structure by using SSI)

  • 유광호;김영진
    • 한국터널지하공간학회 논문집
    • /
    • 제20권1호
    • /
    • pp.23-38
    • /
    • 2018
  • 현재까지 대부분의 내진해석 연구는 지상과 지하구조물을 개별적으로 분석하는 데 제한되어왔기 때문에 그 상호거동이 효과적으로 분석되지 못했다. 따라서 본 연구에서는 기반암과 표층으로 이루어진 지반에 건물과 인접지하구조물이 설치되는 복합지하시설물을 대상으로 지반과 구조물을 동시에 고려한 동적해석(SSI)을 수행하였다. 내진안정성이 층간변위비와 구조부재의 휨응력에 근거하여 분석되었다. 그 결과, 초고층건물이 저층건물보다 인접지하구조물의 영향을 더 많이 받지만, 지상구조물은 내진안정성이 양호한 것으로 나타났다. 반면, 건물의 지하부와 인접지하구조물에서 발생한 휨인장응력이 허용값을 초과하여 지상부보다는 지하구조물이 더 취약할 수 있다고 나타났다. 따라서 대도시에서의 건물은 주변에 다양한 구조물이 존재하기 때문에 내진해석 시 지상 및 지하구조물을 동시에 고려해야 상호거동을 정확히 예측할 수 있다고 판단된다.

지반-구조물 상호작용을 고려한 철도 교량하부 말뚝 기초의 내진 안정성 평가 (An Evaluation on the Seismic Stability of a Railway Bridge Pile Foundation Considering Soil-Structure Interaction)

  • 이기호;신민호
    • 한국철도학회논문집
    • /
    • 제6권1호
    • /
    • pp.29-40
    • /
    • 2003
  • In this study, the three dimensional pile-soil dynamic interaction analysis of the railway bridge pile foundation was performed using SASSI 2000 program and the applicability of SASSI 2000 about an evaluation of the seismic stability of a pile foundation was examined. The numerical analysis was executed on the two site of actual construction and input properties such as the acceleration of bedrock were estimated by one dimensional seismic response analysis using the Pro-SHAKE. Consequently, all the piles of the subject of investigation showed that displacement occurred within a permitted limit and the shear force and moment largely occurred at the point where the soil stiffness varied rapidly.

Evaluation of energy response of space steel frames subjected to seismic loads

  • Ozakgul, Kadir
    • Structural Engineering and Mechanics
    • /
    • 제54권4호
    • /
    • pp.809-827
    • /
    • 2015
  • In this paper, seismic energy response of inelastic steel structures under earthquake excitations is investigated. For this purpose, a numerical procedure based on nonlinear dynamic analysis is developed by considering material, geometric and connection nonlinearities. Material nonlinearity is modeled by the inversion of Ramberg-Osgood equation. Nonlinearity caused by the interaction between the axial force and bending moment is also defined considering stability functions, while the geometric nonlinearity caused by axial forces is described using geometric stiffness matrix. Cyclic behaviour of steel connections is taken into account by employing independent hardening model. Dynamic equation of motion is solved by Newmark's constant acceleration method in the time history domain. Energy response analysis of space frames is performed by using this proposed numerical method. Finally, for the first time, the distribution of the different energy types versus time at the duration of the earthquake ground motion is obtained where in addition error analysis for the numerical solutions is carried out and plotted depending on the relative error calculated as a function of energy balance versus time.

시뮬레이션 기법을 이용한 지진 시 사면안정 해석 (Simulation-Based Assessment of Seismic Slope Stability)

  • 김진만
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2003년도 춘계 학술발표회논문집
    • /
    • pp.157-164
    • /
    • 2003
  • A simulation-based approach that can be used to systematically model the uncertainties of seismic loading and geotechnical property is presented in the context of reliability analysis of slope stability. The uncertainty of seismic loading is studied by generating a large series of hazard-compatible artificial motions, and by using them in subsequent response analyses. The stochastic nature of spatially varying material properties and also the uncertainty arising from insufficient information are treated in the framework of random fields. The simulation-based analyses indicate that in a seismically less active region, a moderate variability in soil properties has a relatively large effect as much as characterization of earthquake hazard on the computed risk of slope failure and excessive slope deformations.

  • PDF

Seismic response distribution estimation for isolated structures using stochastic response database

  • Eem, Seung-Hyun;Jung, Hyung-Jo
    • Earthquakes and Structures
    • /
    • 제9권5호
    • /
    • pp.937-956
    • /
    • 2015
  • Seismic isolation systems decouple structures from ground motions to protect them from seismic events. Seismic isolation devices have been implemented in many full-scale buildings and bridges because of their simplicity, economic effectiveness, inherent stability, and reliability. It is well known that the most uncertain aspect for obtaining the accurate responses of an isolated structure from seismic events is the seismic loading itself. It is needed to know the seismic response distributions of the isolated structure resulting from the randomness of earthquakes when probabilistic designing or probabilistic evaluating an isolated structure. Earthquake time histories are useful and often an essential element for designing or evaluating isolated structures. However, it is very challenging to gather the design and evaluation information for an isolated structure from many seismic analyses. In order to evaluate the seismic performance of an isolated structure, numerous nonlinear dynamic analyses need to be performed, but this is impractical. In this paper, the concept of the stochastic response database (SRD) is defined to obtain the seismic response distributions of an isolated structure instantaneously, thereby significantly reducing the computational efforts. An equivalent model of the isolated structure is also developed to improve the applicability and practicality of the SRD. The effectiveness of the proposed methodology is numerically verified.

진동대 시험을 통한 Fill Dam의 내진 안정성 평가 (Evaluation of the Seismic Stability of Fill Dam by Shaking Table Tests)

  • 윤원섭;채영수;박면규
    • 한국지반신소재학회논문집
    • /
    • 제10권4호
    • /
    • pp.81-92
    • /
    • 2011
  • 본 연구에서는 흙 댐 구조물의 지진저항 특성을 파악하기 위하여 3가지 대표단면을 기초로 하여 축소모형의 비율에 해당하는 상사법칙을 고려하여 각각 1:100, 1:70, 1:50으로 토조를 제작하였다. 그리고 국내 설계기준에 준하여 장주기인 Hachinohe파, 단주기인 Ofunato파, 인공지진파를 가진하여 각 단면에 대해 가속도변화, 과잉간극수압, 수직 및 수평변위를 측정하고, 측정된 결과를 통하여 지반-구조물-유체의 상호작용에 따른 안정성을 평가하였다. 시험결과 시험 대상 단면의 변위는 지진 시 허용변위량 300mm에 비해 비교적 작은 변위로 지진 시 안정성을 확보하였다. 가속도 계측결과 Hachinohe파, Ofunato파는 할증률 20%정도로 평가되었지만 인공지진파는 할증률 30%정도로 평가되었다. 과잉간극수압비 측정결과 액상화 평가기준인 과잉간 극수압비 1이하로 모형단면은 액상화에 대해 안정성을 확보하였다.

지진계수를 고려한 제방의 사면안정에 관한 연구 (A Study on the Slope Stability of Embankment in Consideration of Seismic Coefficient)

  • 강우묵;지인택;이달원
    • 한국농공학회지
    • /
    • 제33권4호
    • /
    • pp.105-120
    • /
    • 1991
  • This study was performed to investigate the minimum safety factor of embankment in consideration of seismic coefficient by the psuedo-static analysis The variables were cohesion, the internal friction angle, angle of slope, height of seepage, height of embankment, depth of replacement The results obtained were compared with those by Fellenius method, simplified Bishop method and Janbu method. The results were summarized as follows: 1.The increasing rate of the minimum safety factor with the increasing of cohesion appeared larger in Fellenius method and Bishop method than in Janbu method. And that with the increasing of the internal friction angle appeared the lowest value in Janbu method. The minimum safety factor was influenced larger on the internal friction angle than on cohesion. 2.The variation of the minimum safety factor with the height of seepage at 0m and 5 m was nearly similar to Fellenius method, Bishop method and Janbu method. On the other hand, it was decreased suddenly at 25 m. 3.The minimum safety factor with the height of embankment was decreased remarkably under 10 m with the increasing of seismic coefficient. But, it was decreased slowly more than 10 m. As the height of embankment was low, the influence of cohesion appeared larger. 4.In heigher case of the depth of replacement, the phenomenon of reduction of the minimum safety factor appeared remarkably with seismic coefficient increased. And in lower case of the depth of replacement, the minimum safety factor was similar in Fellenius method and Bishop mehtod. But it appeared larger in Bishop method and Janbu method than in Fellenius method with the depth of replacement increased. 5.As the cohesion and the internal friction angle were large, the phenomenon of reduction of the minimum safety factor with the increasing of seismic coefficient appeared remarkably. Also, the influence of seismic coefficient in minimum safety factor appeared larger with the soil parameter increased. 6.When the seismic coefficient was considerated, investigation of the structural body on the slope stability appeared profitably in Fellenius method and Janbu method than in Bishop method.

  • PDF

Analysis of settlements of space frame-shear wall-soil system under seismic forces

  • Jain, D.K.;Hora, M.S.
    • Earthquakes and Structures
    • /
    • 제8권5호
    • /
    • pp.1255-1276
    • /
    • 2015
  • The importance of considering soil-structure interaction effect in the analysis and design of RC frame buildings is increasingly recognized but still not penetrated to the grass root level owing to various complexities involved. It is well established fact that the soil-structure interaction effect considerably influence the design of multi-storey buildings subjected to lateral seismic loads. The shear walls are often provided in such buildings to increase the lateral stability to resist seismic lateral loads. In the present work, the linear soil-structure analysis of a G+5 storey RC shear wall building frame resting on isolated column footings and supported by deformable soil is presented. The finite element modelling and analysis is carried out using ANSYS software under normal loads as well as under seismic loads. Various load combinations are considered as per IS-1893 (Part-1):2002. The interaction analysis is carried out with and without shear wall to investigate the effect of inclusion of shear wall on the total and differential settlements in the footings due to deformations in the soil mass. The frame and soil mass both are considered to behave in linear elastic manner. It is observed that the soil-structure interaction effect causes significant total and differential settlements in the footings. Maximum total settlement in footings occurs under vertical loads and inner footings settle more than outer footings creating a saucer shaped settlement profile of the footings. Each combination of seismic loads causes maximum differential settlement in one or more footings. Presence of shear wall decreases pulling/pushing effect of seismic forces on footings resulting in more stability to the structures.

다짐시공이 불량한 증고 저수지 제체의 침투 및 동적거동 해석 (Numerical Simulation on Seepage and Seismic Behaviors of Poorly-Compacted Raised Reservoir Levee)

  • 이충원;박성용;오현문;김용성
    • 한국농공학회논문집
    • /
    • 제57권4호
    • /
    • pp.85-99
    • /
    • 2015
  • It is urgent to redevelop the superannuated reservoir levee through the levee raising for countermeasure to climate change and improvement of storage capacity of reservoir. However, low compaction degree of the raised reservoir levee owing to poor construction condition leads to degradation of the stability of the reservoir levee on seepage and earthquake. In this study, seepage and seismic behavior of raised reservoir levee with low compaction degree was evaluated through numerical simulation. From the simulated results, water level raising possibly induces crack and/or sinkhole on the surface of the poorly-compacted raised reservoir levee owing to the increase of the subsidences at the crown and the front side of that. In addition, relatively larger displacement and acceleration response at the front side of raised reservoir levee in seismic condition may degrade overall stability of reservoir levee. Therefore, reasonable construction management for the compaction of the raised reservoir levee is required for ensuring long-term stability on seepage and earthquake.

Experimental and Measurement Methods for the Small-Scale Model Testing of Lateral and Torsional Stability

  • Lee, Jong-Han;Park, Yong Myung;Jung, Chi-Young;Kim, Jae-Bong
    • International Journal of Concrete Structures and Materials
    • /
    • 제11권2호
    • /
    • pp.377-389
    • /
    • 2017
  • Tests of the lateral and torsional stability are quite sensitive to the experimental conditions, such as support conditions and loading system. Controlling all of these conditions in a full-size test is a very challenging task. Therefore, in this paper, an experimental measurement method that can control the experimental conditions using a small-scale model was proposed to evaluate the lateral and torsional stability of beams. For this, a loading system was provided to maintain the vertical direction of the load applied to the beam, and a support frame was produced to satisfy the in-plane and out-of-plane support conditions. The experimental method using a small-scale model was applied successively to the lateral and torsional behavior and stability of I-shaped beams. The proposed experimental methods, which effectively accommodate the changes in the geometry and length of the beam, could contribute to further experimental studies regarding the lateral and torsional stability of flexural members.