• Title/Summary/Keyword: Seismic refraction method

Search Result 69, Processing Time 0.024 seconds

Seismic Refraction Survey for Installation of Water Pipe on a Side of the Seomjin River near Namwon (남원 섬진강변 관로 매설을 위한 굴절파 탐사)

  • Kim, Gi Yeong;U, Nam Cheol;Kim, Hyeong Su
    • Journal of the Korean Geophysical Society
    • /
    • v.2 no.3
    • /
    • pp.209-216
    • /
    • 1999
  • In order to get geologic information necessary for underground installation of water pipe, seismic refraction profiling was applied to the southwest side of the Seomjin River which flows between Namwon-gun, Cholabuk-do and Gokseong-gun, Cholanam-do. Before obtaining the in-line refraction data, walkaway data were recorded with 1 m geophone interval and -36∼+36 m offset range. From the walkaway data, it is interpreted that a dry soil layer with the average velocity of 585 m/s covers wet sediments with the average velocity of 1,326 m/s. The second layer overlies basements nearly horizontally with the average velocity of 4,218 m/s. Refraction profiling of 220 m long with the geophone interval of 2 m is interpreted with the Generalized Reciprocal Method (GRM). Three layers are identified with average velocities of 688 m/s, 1,473 m/s, and 3,776 m/s, respectively. The depth to the bedrock impossible for ripping ranges between two extremes, 1.51∼2.43 m and 2.25∼3.54 m, depending upon thickness of the hidden layer. A typical shortcoming of refraction method, the hidden layer problem, prevents accurate estimation in depth of the second layer.

  • PDF

A Study on Rock Mass Classification in Quartzite Rock Bed with Consideration of Joint Frequency (절리빈도를 고려한 규암 암반에서의 합리적인 암판정 연구)

  • Lee, Su-Gon;Kim, Min-Sung;Lee, Kyung-Soo;Lee, Chi-Hong
    • Tunnel and Underground Space
    • /
    • v.17 no.2 s.67
    • /
    • pp.102-108
    • /
    • 2007
  • Generally, the method used most widely for rock mass classification is considering the rock strength and development of joint frequency. However, if rock bed has micro-crack and long joint, this method is not rational. Therefore, the difficulties of excavation in the rock bed with complicated geological condition are decided by combining joint frequency. indoor tests (uniaxiall compressive strength, point load test, indoor elastic wave velocity, etc.) and field seismic refraction survey, and the rock mass classification should be implemented by considering their interrelationship.

Study on Analysis of Geophysical Data for Complex Geological Condition (복잡한 지하구조 해석을 위한 물리탐사 자료 분석에 관한 연구)

  • Shin, Deuck-Hyun;Kim, Hoon;Oh, Seok-Hoon;Suh, Baek-soo
    • Journal of Industrial Technology
    • /
    • v.27 no.B
    • /
    • pp.115-119
    • /
    • 2007
  • Currently, geophysical method is applied for understanding the subsurface geologic structure economically and systematically, but there exists some limitations on recognizing complex subsurface structures precisely by a single geophysical method. In order to understand the complex subsurface structures, we applied various geophysical methods including seismic refraction survey, two-dimensional resistivity survey, seismic tomography survey, suspension-ps log, and understood distribution of low velocity, low resistivity range of resistivity survey and correlation of an intersecting point, velocity distribution of seismic tomography survey.

  • PDF

금강 부여 군수리 충적 대수층 조사를 위한 고해상도 지구물리탐사 - 탄성파 탐사 및 GPR 조사를 중심으로 -

  • 김형수;서만철;이철우;진세화
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.04a
    • /
    • pp.287-291
    • /
    • 2003
  • To delineate the internal structures of alluvial aquifer, high resolution seismic and GPR methods were adopted in Buyeo Gunsu-Ri area. The result of seismic refraction survey shows the water table of the aquifer and the result of seismic reflection reveals the basement and somewhat dominant internal structures of alluvial aquifer. The internal heterogeneity due to variations in channel behavior can be delineated using GPR survey. GPR profiles for the point bar deposits near Buyeo county reveals two different stratigraphic units the lower inclined heterogeneous strata and the upper horizontally stratified strata. According to the increase of demand for water resource using artificial recharge in alluvium, it is believed that the information acquired by high resolution geophysical methods will have an important roles for the effective and sustainable development and usage of groundwater in alluvial aquifer.

  • PDF

Rock Mass Classification by Surface-borehole Hybrid Array Seismic Refraction Tomography in the Region of Serious Electrical Noises (전기적 잡음이 심한 지역에서 지표-시추공 복합배열 탄성파탐사에 의한 암반등급 산정)

  • Kim Ye Ryun;Sha Sang Ho;Nam Soon Sung;Jo Cheol Hyun;Cha Young Ho;Park Jong Bum;Shin Kyung Jin
    • Proceedings of the KSR Conference
    • /
    • 2005.05a
    • /
    • pp.610-614
    • /
    • 2005
  • Rock mass classification by using electrical resistivity tomography(ERT) method is widely performed for the determination of rock support type in tunnel design. In the region of high electrical noise level, however, the result of the ERT will have many erroneous features. In this study, the back ground electrical noise had been measured to find out the reason why the results of ERT in this area did not agree to the expected geology confirmed by boreholes. In order to overcome this limitation of ERT, a hybrid surface-borehole array seismic refraction tomography had been followed. Using this technique, we could get P-wave velocity section including the depth level of tunnel. The comparison of the P-wave velocity and RMR shows fairly good statistical relationship to make it possible to set up the rock mass classification for the entire tunnel line.

  • PDF

A Refraction Seismic Survey of Unconsolidated Sediments Adjacent Lake Soyang (굴절파 탐사를 이용한 소양호 주변의 미고결 퇴적물 연구)

  • Hong, Myung-Ho;Kim, Ki-Young
    • Journal of the Korean Geophysical Society
    • /
    • v.9 no.4
    • /
    • pp.343-349
    • /
    • 2006
  • In order to study unconsolidated sediments upstream of the Soyang Dam, seismic refraction data were recorded along five profiles of 94 m length. Receiver interval and record length were 2 m and 204 ms, respectively. Recorded data were analyzed using the traveltime tomography and delay-time methods in order to reveal sediment distribution in the investigation site. The acoustic basements are buried at approximately 14 m deep and their thickness shallows to southeast approaching to a hill. On the basement, pre-existing sediments deposited before construction of the Soyang dam lies. This sedimentary layer is composed of paleo-soil and sandy sediments. Above this layer, recent sediments comprise the top layer which is believed to have been deposited since the formation of the dam. Average thickness of this uppermost layer is approximately 1.6 m, which is much thicker than in the downstream.

  • PDF

Identification of high-dip faults utilizing the GRM technique of seismic refraction method(Ⅱ) -Application to real data- (굴절파 GRM 해석방법을 응용한 고경사 단층 인지 (Ⅱ) -실제 자료 적용-)

  • Kim, Gi Yeong;U, Nam Cheol
    • Journal of the Korean Geophysical Society
    • /
    • v.2 no.1
    • /
    • pp.65-74
    • /
    • 1999
  • From refraction data along four seismic profiles near Eonyang which the Yangsan fault passes through, the Slope Variation Indicators (SVI) are computed and interpreted in terms of fault distribution. The average velocities of 2,250-2,870 m/s are estimated using velocity-analysis functions for the target boundary along those profiles. The average velocity for Line 1 is approximately 600 m/s lower than ones for the other lines. The SVI's with amplitude greater than or equal to 0.5 ms/m are turned out to be located near faults shown on the high-resolution reflection section, as closely as one station spacing (3 m). Large amplitude SVI's are densely distributed near National Road 35, and the fault having the largest vertical slip is indicated to be located approximately 930 m west of the inferred fault on the published geologic map.

  • PDF

A Study on Interpretation of Seismic Refraction and Reflection Traveltime Curves in 3-D Layers (3-D 지층의 굴절 및 반사 주시곡선 해석 연구)

  • Yang, Seung-Jin;You, Hai-Soo;Park, Suk-Jae
    • Economic and Environmental Geology
    • /
    • v.25 no.1
    • /
    • pp.79-85
    • /
    • 1992
  • An Interpretation technique is presented to determine strike, dip, velocity and depth of 3-D planar layers from refraction or reflection traveltime curve. This interpretation technique determines the direction of emerging ray from the slope of the traveltime curve and traces the emerging ray to the refractor or reflector. The ray direction in the last layer is used to decide the normal vector to the refractor or reflector from whick its dip, strike and velocity are calculated. The vertical depth to the refractor or reflector is computed by using the intercept or zero-offset time and the ray direction in each layer. Some tests on the interpretation method are performed for the sysnthetic traveltimes generated in 3-D model layers and show that the paramerters of the model layers are accurately determined.

  • PDF

Seismic exploration for understanding the subsurface condition of the Ilwall-dong housing construction site in Pohang-city, Kyongbook (경북 포항시 일월동 택지개발지구의 지반상태 파악을 위한 탄성파탐사)

  • Seo, Man Cheol
    • Journal of the Korean Geophysical Society
    • /
    • v.2 no.1
    • /
    • pp.45-56
    • /
    • 1999
  • Seismic refracrion and reflection surveys were conducted along an E-W trending track of 482 m long in Ilwall-dong, Pohang. End-on spread was employed as source-receiver configuration with 2 m for both geophone interval and offset. Seismic data were acquired using 24 channels at every shot fired every 2 m along the track. Refraction data were interpreted using equations for multi-horizontal layers. Reflection data were processed in the sequence of trace edit, gain control, CMP sorting, NMO correction, mute, common offset gathering, and filtering to produce a single fold seismic section. There are two layers in shallow subsurface of the study area. Upper layer has the P-wave velocities ranging from 267 to 566 m/s and is interpreted as a layer of unconsolidated sediments. Lower layer has P-wave velocities of 1096-3108 m/s and is interpreted as weathered rock to hard rock. Most of the lower layer classified as soft rock. Upper layer has lateral variations in both P-wave velocity and thickness. The upper layer in the eastern part of the seismic line is 3-5 m thick and has P-wave velocity of 400 m/s in average. The upper layer in the western part is 8-10 m thick and has P-wave velocity of 340 m/s in average. The eastern part is interpreted as unconsolidated beach sand, while the western part is interpreted as infilled soil to develop a construction site. Three fault systems of high angle are imaged in seismic reflection section. It is interpreted that the area between these fault systems are relatively safe. Large buildings should be located in the safe ground condition of no fault and footings should be designed to be in the basement rock of 3-10 m deep below the surface.

  • PDF

Resolving a velocity inversion at the geotechnical scale using the microtremor (passive seismic) survey method

  • Roberts James C.;Asten Michael W.
    • Geophysics and Geophysical Exploration
    • /
    • v.7 no.1
    • /
    • pp.14-18
    • /
    • 2004
  • High levels of ambient noise and safety factors often limit the use of 'active-source' seismic methods for geotechnical investigations in urban environments. As an alternative, shear-wave velocity-depth profiles can be obtained by treating the background microtremor wave field as a stochastic process, rather than adopting the traditional approach of calculating velocity based on ray path geometry from a known source. A recent field test in Melbourne demonstrates the ability of the microtremor method, using only Rayleigh waves, to resolve a velocity inversion resulting from the presence of a hard, 12 m thick basalt flow overlying 25 m of softer alluvial sediments and weathered mudstone. Normally the presence of the weaker underlying sediments would lead to an ambiguous or incorrect interpretation with conventional seismic refraction methods. However, this layer of sediments is resolved by the microtremor method, and its inclusion is required in one-dimensional layered-earth modelling in order to reproduce the Rayleigh-wave coherency spectra computed from observed seismic noise records. Nearby borehole data provided both a guide for interpretation and a confirmation of the usefulness of the passive Rayleigh-wave microtremor method. Sensitivity analyses of resolvable modelling parameters demonstrate that estimates of shear velocities and layer thicknesses are accurate to within approximately $10\%\;to\;20\%$ using the spatial autocorrelation (SPAC) technique. Improved accuracy can be obtained by constraining shear velocities and/or layer thicknesses using independent site knowledge. Although there exists potential for ambiguity due to velocity-thickness equivalence, the microtremor method has significant potential as a site investigation tool in situations where the use of traditional seismic methods is limited.