• Title/Summary/Keyword: Seismic guidelines

Search Result 162, Processing Time 0.021 seconds

An Analysis on the seismic Performance of Additional Shear-Wall Construction for the Remodeling of Shear-Wall Type Apartment Buildings (벽식구조 아파트 리모델링을 위한 전단벽 신설공법의 내진성능 분석)

  • Hong, Geon-Ho;Jung, Woo-Kyung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.1
    • /
    • pp.153-162
    • /
    • 2007
  • The purpose of this study is to suggest structural design guidelines in additional shear-wall construction method for apartment remodeling with understanding the effects of the position, length and thickness of the additional walls. The slab-wall frames under seismic loads are analyzed using effective beam width model, which can practically evaluate the structural performance of existing building system. According to the results, proper design guidelines of additional shear-wall construction method(position, length and thickness) is suggested to get the required seismic performance.

Seismic Response Evaluation of Waste Landfills (쓰레기 매립지반의 지진거동 평가)

  • 김기태;이지호;장연수
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.03a
    • /
    • pp.767-772
    • /
    • 2002
  • Free-field ground motion during earthquake is significantly affected by the local site conditions and it is essential in the seismic design to perform the accurate site-specific ground response analysis. In this paper, one-dimensional seismic characteristics of waste landfill are studied based on the vertical propagation of horizontal shear waves through the column of soil/waste. Seismic response analysis is peformed for short-period, long-period and artificial earthquake ground motions using a computer program for seismic response analysis of horizontally layered soil deposits. The computed peak ground accelerations are compared with the values calculated according to Korean seismic design guidelines. The analysis result shows that the long-period earthquake causes the largest peak ground acceleration while the artificial earthquake results in the smallest one.

  • PDF

Overview of Performance-Based Seismic Design of Building Structures in China

  • Li, Guo-Qiang;Xu, Yan-Bin;Sun, Fei-Fei
    • International Journal of High-Rise Buildings
    • /
    • v.1 no.3
    • /
    • pp.169-179
    • /
    • 2012
  • The development history, the current situation and the future of the performance-based seismic design of building structures in China are presented in this paper. Firstly, the evolution of performance-based seismic design of building structures specified in the Chinese codes for seismic design of buildings of the edition 1974, 1978, 1989, 2001 and 2010 are introduced and compared. Secondly, in two parts, this paper details the provisions of performance-based seismic design in different Chinese codes. The first part is about the "Code for Seismic Design of Buildings" (GB50011) (edition 1989, 2001 and 2010) and "Technical Specification for Concrete Structures of Tall Building", which presents the concepts and methods of performance-based seismic design adopted in Chinese codes; The second part is about "Management Provisions for Seismic Design of Outof-codes High-rise Building Structures" and "Guidelines for Seismic Design of Out-of-codes High-rise Building Structures", which concludes the performance-based seismic design requirements for high-rise building structures over the relevant codes in China. Finally, according to those mentioned above, this paper pointed out the imperfections of current performance-based seismic design in China and proposed the possible direction for further improvement.

A Study on Review-Level Ground Motion For Seismic Margin Assessment (내진여유도 평가를 위한 부석기준지진동(RLGM) 평가 연구)

  • 연관희;이종림
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.04a
    • /
    • pp.97-104
    • /
    • 2000
  • Evaluating a Review-Level Ground Motion is a key to efficiently perform Seismic Margin Assessment of nuclear power plants whose purpose is to determine a ground motion level for which a plant has high-confidence-of-a-low-probability of seismic-induced core damage and to identify any weaker-link components. In this study a method to obtain RLGMs is reviewed which is recommended by Electric Power Research Institute and implemented to be applied to Limerick site in eastern and central U. S as a case study. This method provides reasonable and site-specific RLGMs as minimum required plant HCLPF for SMA that meet a target mean seismic core-damage frequency based on seismic hazard results and generic values of uncertainty and randomness parameters of the core-damage fragility curves. In addition high-frequency RLGM is justifiably modified to reflect the increased seismic capacity of high-frequency components and spatial variation and incoherence of input ground motion on a basemat of large structures by establishing a method to obtain high0-frequency reduction factors according to EPRI guidelines.

  • PDF

Seismic Performance of Wind-Designed Diagrid Tall Steel Buildings in Regions of Moderate Seismicity and Strong Wind

  • Kim, Seonwoong;Lee, Kyungkoo
    • Steel and Composite Structures
    • /
    • v.14 no.2
    • /
    • pp.155-171
    • /
    • 2013
  • This study analytically evaluated the seismic performance of wind-designed diagrid tall steel buildings in regions of moderate/low seismicity and strong winds. To this end, diagrid tall steel buildings with varying wind exposure and slenderness ratio (building height-to-width ratio) conditions were designed to satisfy the wind serviceability criteria specified in the Korean Building Code and the National Building Code of Canada. A series of seismic analyses were then performed for earthquakes having 43- and 2475- year return periods utilizing the design guidelines of tall buildings. The analyses demonstrated the good seismic performance of these wind-designed diagrid tall steel buildings, which arises because significant overstrength of the diagrid system occurs in the wind design procedure. Also, analysis showed that the elastic seismic design process of diagrid tall steel buildings might be accepted based on some wind exposures and slenderness ratios.

Ductility Based Seismic Design of Circular R/C Bridge Piers (원형 철근콘크리트 교각의 연성도 내진설계)

  • Choi Jin Ho;Ko Seong Hyun;Hwang Jung Kil;Lee Jea Hoon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.101-104
    • /
    • 2005
  • This study is to develop detailing guidelines based on ductility demand for reinforced concrete bridge columns in areas of low to moderate seismicity. The current seismic design criteria of the Korea Design Specifications for Highway Bridge (KDSHB 2005) adopted the seismic design concept and requirements of the AASHTO specifications. In order to obtain full ductile behavior under seismic loads, i.e. when applied seismic force is larger than design flexural strength of column section, a response modification factor (R=3 or 5) is used. In moderate seismicity regions, however, adopting the full ductility design concept sometimes results in construction problems due to reinforcement congestion. The objective of this paper is to suggest a new simplified seismic design of reinforced concrete bridge columns for moderate seismicity regions.

  • PDF

Validity of Seismic Performance Evaluation Using Static Analysis (정적해석을 이용한 내진성능평가의 타당성)

  • 원학재;한상환;이리형
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.04a
    • /
    • pp.475-480
    • /
    • 2001
  • The purpose of this study is to evaluate the validity of seismic performance evaluation using static analysis. For this purpose, Ordinary Moment Resisting Steel Frames(OMRSF) for different heights(3, 6 ,9, 12 story) and seismic zones(Zone 2A, 2B, 3, 4) were designed in compliance to AISC LRFD 1993 Seismic Provisions and NEHRP 1994 Guidelines. Nonlinear Static Procedure(NSP) and Nonlinear Dynamic Procedure(NDP) with a set of ground motion record were used to evaluate seismic demands in OMRSFs. Using the DRAIN-2DX program, this study compares peak displacement demands(Target Displacement) proposed by FEMA 273 with the peak roof displacement demands obtained from the inelastic time history analyses. Based on the results, the validity of procedure of seismic demand evaluation using Target Displacement is discussed.

  • PDF

A Study on the Seismic Behavior of Small-Size Reinforced Concrete Buildings in Korea (국내 소규모 철근콘크리트 건축물의 내진거동 고찰)

  • Kim, Taewan;Eom, Taesung;Kim, Chul-Goo;Park, Hong-Gun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.18 no.4
    • /
    • pp.171-180
    • /
    • 2014
  • Since the execution of structural design by professional structural engineers is not mandatory for small-size buildings in Korea, structural design is conducted by architects or contractors resulting in concern about the seismic safety of the buildings. Therefore, the Korean Structural Engineers Association proposed dedicated structural design criteria in 2012. The criteria were developed based on a deterministic approach in which the structural members are designed only with information of story and span length of the buildings and without structural analyses. However, due to the short time devoted to their development, these criteria miss satisfactory basis and do not deal with structural walls popularly used in Korea. Accordingly, the Ministry of Land, Infrastructure and Transport launched a research on the 'development of structural performance enhancement technologies for small-size buildings against earthquakes and climate changes'.. As part of this research, this paper intends to establish direction for the preparation of deterministic structural design guidelines for seismic safety of domestic small-size reinforced concrete buildings. To that goal, a typical plan of these buildings is selected considering frames only and frames plus walls, and then design is conducted by changing the number of stories and span length. Next, the seismic performance is analyzed by nonlinear static pushover analysis. The results show that the structural design guidelines should be developed by classifying frames only and frames plus walls. The size and reinforcement of structural elements should be provided in the middle level of the current Korean Building Code and criteria for small buildings by considering story and span length for buildings with frames only, and determined by considering the shape and location of walls and the story and span length as well for buildings with frames plus walls. It is recommended that the design of walls should be conducted by reducing the amount of walls along with symmetrically located walls.

Seismic Design Guidelines for Welded Steel Oil Storge Tank (KS B 6225) (강제석유저장탱크(KS B 6225)의 내진설계기준 개선 안)

  • Park, Jong-Ryul;O, Taek-Yeol
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.3
    • /
    • pp.544-552
    • /
    • 2002
  • Recommended seismic design guide for the flat bottom vortical-cylindrical oil storage tanks in KS B 6225 is presented. Under earthquake excitations, the hydrodynamic pressure exerted on the tank walls produces overturning moment which may cause either a failure of the anchors or a buckling of the tank shell near its base. The basis for establishing design loads due to hydrodynamic pressure is described including seismic zone risk map in Korea, zone coefficients and the essential facilities factor. This procedure for calculating applied compressive stress on the shell base subjecting to seismic load and for estimating the allowable buckling stress is described.

Seismic Design Guidelines for Welded Steel Oil Storge Tank (KS B 6225) (강제 석유 저장 탱크(KS B 6225)의 내진 설계 기준 개선 안)

  • Park, Jong-Ryul;Oh, Taek- Yul
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.166-173
    • /
    • 2001
  • Recommended seismic design guide for the flat bottom vertical-cylindrical oil storage tanks in KS B 6225 is presented. Under earthquake excitations, the hydrodynamic pressure exerted on the tank walls produces overturning moment which may cause either a failure of the anchors or a buckling of the tank shell near its base. The basis for establishing design loads due to hydrodynamic pressure is described including seismic zone risk map in Korea, zone coefficients and the essential facilities factor. This procedure for calculating applied compressive stress on the shell base subjecting to seismic load and for estimating the allowable buckling stress is described.

  • PDF