• Title/Summary/Keyword: Seismic data

Search Result 1,401, Processing Time 0.025 seconds

An Analysis of Response Spectrums of Earthquakes of Korean Peninsula in the First Half of 2000 (2000년도 상반기 한반도 발생지진들의 응답 스펙트럼 분석)

  • 이전희
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.10a
    • /
    • pp.66-72
    • /
    • 2000
  • We have scanned the several seismic traces of earthquakes and blasts observed from the digital new type seismograph instruments of KMA from Jan. 2000 to Aug. 2000. From these data, good quality data which have high signal/noise ratio were selected and they were transformed into ascii data from binary data(mini-seed format). The hypo71 program and P-S was applied in order to determine the location of epicenter, origin time and the magnitude. From these data, the 18 earthquakes and 3 blasts, 207 seismic records consist of 359 directional components were calculated. Using theses ground acceleration data, acceleration, velocity, and displacement response spectrums of the structures were calculated and they could be represented in a picture by the form of tripartite response spectrum. In the result, response spectrums of the 359 directional components of the above seismic data records were obtained respectively.

  • PDF

Prestack migration using seismic interferometry (탄성파 간섭파를 이용한 중합전 구조보정)

  • Kim, Young-Wan;Jang, Seong-Hyung;Yoon, Wang-Jung;Suh, Sang-Yong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.203-207
    • /
    • 2008
  • Prestack depth migration is used to image for complex geological structure such as faults, folds, and subsalt. In this case, it is widely used the surface reflection data as a input data. However, the surface reflection data have intrinsic problems to image the subsalt and the salt flank due to the complex wavefields and multiples which come from overburden. For overcoming the structural defect of the surface reflection data in the imaging, I used the virtual sources in terms of seismic interferometry to image the subsurface and suppress the multiples using the velocity model of the lower part of the virtual sources. The results of the prestack depth migration using virtual source gathers and velocity model below receivers are similar geological interfaces to the results from shot gathers of the conventional ocean bottom seismic survey. And especially artificial interfaces by multiples were suppressed without applying any other data processing to eliminate multiples. This study results by numerical modeling can make a valuable imaging tool when it is applied to satisfied field data for specific condition.

  • PDF

P-wave velocity analysis around BSR depth using surface and ocean bottom seismic data (탄성파 자료를 이용한 BSR 부근의 속도 분석)

  • Kim, Byoung-Yeop;Koo, Nam-Hyung;Yoo, Dong-Geun
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.151-156
    • /
    • 2007
  • In December 2006, 2D surface streamer and Ocean Bottom Seismometer (OBS) data were acquired in the Ulleung basin in Korea where strong Bottom Simulating Reflectors (BSR) were shown as a result of 2D and 3D multichannel (MCS) reflection survey. The aim of this study is to provide another reliable source for estimating P wave velocity around BSR depth using OBS data in addition to velocity information from 2D surface seismic data. Four OBSs were deployed and four 20-km shot lines which pass two OBSs respectively were designed. To derive P wave velocity profile, interactive interval velocity analysis using ${\tau}$-p trajectory matching method (Kumar, 2005) was used for OBS data and semblance analysis was used for surface data. The seismic profiles cross the OBS instruments in two different directions yield recordings for four different azimuths. This raised the confidence for the results. All velocity profiles in the vicinity of BSR depth of four OBS sites show almost definite velocity changes which we could consider as upper BSR and free gas layer. Making comparison between velocity from OBS and that from 2D seismic semblance velocity analysis gives consistency in result.

  • PDF

SEISMIC MONITORING IN SURFACE MINES

  • Ajay Kumar, L.;David Raj, D. Edwin;Renaldy, T. Amrith;Vinoth, S.
    • Tunnel and Underground Space
    • /
    • v.19 no.3
    • /
    • pp.174-180
    • /
    • 2009
  • This paper gives a brief review of seismicity and seismic monitoring in surface mines. A summary of various researches related to seismicity is presented. Our research focuses on the understanding of seismicity and the application of analytical techniques to seismicity. Seismic monitoring plays an important role in the identification of potential failure planes and thereby predict potential failures. Much of the instrumentation used in our research is derived from earthquake monitoring systems. The major aspects in seismic monitoring are an instrumentation used, size of the network and data acquisition systems. Seismic monitoring in surface mines could be successfully applied to the improvement of safety standards in slope stability.

Establishment of Korea Integrated Seismic System (KISS) (통합 지진네트워크 구축)

  • 이희일;지헌철;임인섭;조창수;류용규
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2002.09a
    • /
    • pp.19-27
    • /
    • 2002
  • The four agencies in Korea - KMA, KIGAM, KEPRI, and KINS - have been operating their own seismic network for many years. In this study we have developed an integrated seismic system named KISS (Korea Integrated Seismic System), which is very similar to LISS (Live Internet Seismic Server) of Albuquerque Seismological Laboratory. Through KISS we could share all the earthquake data observed by those organizations in near real time. This research result will lead to provide the opportunity to use all seismic information of the earthquakes around Korean peninsula. And KISS will make us enable to do systematic researches, such as study on focal mechanisms of earthquakes around Korean peninsula, seismic design, earthquake prediction, etc. KISS will be used in developing an Early Earthquake Warning System like TriNet in Southern California, USA so as to minimize seismic hazard.

  • PDF

Applying Spitz Trace Interpolation Algorithm for Seismic Data (탄성파 자료를 이용한 Spitz 보간 알고리즘의 적용)

  • Yang Jung Ah;Suh Jung-Hee
    • Geophysics and Geophysical Exploration
    • /
    • v.6 no.4
    • /
    • pp.171-179
    • /
    • 2003
  • In land and marine seismic survey, we generally set receivers with equal interval suppose that sampling interval Is too narrow. But the cost of seismic data acquisition and that of data processing are much higher, therefore we should design proper receiver interval. Spatial aliasing can be occurred on seismic data when sampling interval is too coarse. If we Process spatial aliasing data, we can not obtain a good imaging result. Trace interpolation is used to improve the quality of multichannel seismic data processing. In this study, we applied the Spitz algorithm which is widely used in seismic data processing. This algorithm works well regardless of dip information of the complex underground structure. Using prediction filter and original traces with linear event we interpolated in f-x domain. We confirm our algorithm by examining for some synthetic data and marine data. After interpolation, we could find that receiver intervals get more narrow and the number of receiver is increased. We also could see that continuity of traces is more linear than before Applying this interpolation algorithm on seismic data with spatial aliasing, we may obtain a better migration imaging.

The Engineering Characteristics of Seismicity of Korean Peninsula in 2000 (2000년도 한반도 지진활동의 공학적 특성)

  • 이전희
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2001.04a
    • /
    • pp.81-90
    • /
    • 2001
  • Several seismic traces of earthquakes observed from the digital new type seismograph instruments of KMA in 2000 were scanned. From these, good quality data which have high signal/noise ratio were selected and they were transformed into ascii data from binary data(min-seed format). The hypo71 program and P-S was applied in order to determine the location of epicenter, origin time and the magnitude. From these data, the 29 earthquakes, 358 seismic records consist of 587 directional components were calculated. Using these, ground acceleration data, acceleration, velocity, and displacemnet response spectrums of the structures were calculated and they could be represented in a picture by the form of tripartite response spectrum. In the result, response spectrums of the 587 directional components of the above seismic data records were obtained respectively.

  • PDF

Network Configuration, Time Management, and Data Storage for Urban Earthquake Disaster Preventing System (도시형 지진방재시스템을 위한 네트워크 구성, 시간관리 및 데이터 저장 방법)

  • Choi, Hun;Youn, Joosang;Heo, Gyeongyong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.12
    • /
    • pp.1675-1682
    • /
    • 2014
  • In this paper, we propose a precise time management and time synchronization based on real-time data storage and transmission scheme in design of seismic data acquisition system for urban earthquake disaster preventing system (UEDPS). It is possible to improve the performance of the existing research results through the proposed methods. To evaluate the performances of the proposed methods, we implemented a prototype system(H/W & S/W) and performed some experiments with real seismic data and test equipment generated data as the input.

Study of Seismic Data Processing Method for Tunnel Detection (터널탐사를 위한 탄성파 자료처리법에 관한 연구)

  • Suh, Baek-Soo;Sohn, Kwon-Ik
    • The Journal of Engineering Geology
    • /
    • v.17 no.4
    • /
    • pp.633-642
    • /
    • 2007
  • Traveltime tomogram is generally used for interpretation of seismic tunnel data. In the field data, the first arrival traveltime is less dispersive with increasing source-receiver seperation compared to theoretical model data. So the result of calculation can be serious despite of small errors such as traveltime picking. In this study, amplitude method and error tomogram method are tried to overcome these problems. This method will help the interpretation of the data from the underground tunnel.

Integrated Interpretation of Geophysical Data and its Application by Geostatistical Approach (지구통계학적 방식에 의한 물리탐사 자료의 복합해석과 그 응용)

  • Oh, Seok-Hoon;Chung, Ho-Joon;Suh, Baek-Soo
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.48-53
    • /
    • 2007
  • A new way to integrate various geophysical information for evaluation of RQD was developed. In this study, we did not directly define the RQD value where borehole data are not sampled. Instead, we infer the probability of RQD values with prior probability from borehole direct data, and secondary supporting probability from resistivity and seismic tomography data. For the integration, we applied the geostatstical indicator kriging to get prior probability of RQD value, and indicator kriging with soft data to get the supporting probability from resistivity and seismic data. And we finally use the permanence ratio rule to integrate these information. The finally obtained result was also analyzed to fully utilize the probabilistic features. We show the probability of wrongly classifying the RQD evaluation and vice versa. This result may be used for decision making process based on the geophysical exploration.

  • PDF