• Title/Summary/Keyword: Seismic characteristics

Search Result 1,435, Processing Time 0.027 seconds

Seismic Response Control of Dome Structure Subjected to Multi-Support Earthquake Excitation (다중지점 지진하중을 받는 돔 구조물의 지진응답 제어)

  • Kim, Gee-Cheol;Kang, Joo-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.14 no.4
    • /
    • pp.89-96
    • /
    • 2014
  • Spatial structures as like dome structure have the different dynamic characteristics from general rahmen structures. Therefore, it is necessary to accurately analyze dynamic characteristics and effectively control of seismic response of spatial structure subjected to multi-supported excitation. In this study, star dome structure that is subjected to multi-supported excitation was used as an example spatial structure. The response of the star dome structure under multiple support excitation are analyzed by means of the pseudo excitation method. Pseudo excitation method shows that the structural response is divided into two parts, ground displacement and structural dynamic response due to ground motion excitation. And the application of passive tuned mass damper(TMD) to seismic response control of star dome structures has been investigated. From this numerical analysis, it is shown that the seismic response of spatial structure under multiple support seismic excitation are different from those of spatial structure under unique excitation. And it is reasonable to install TMD to the dominant points of each mode. And it is found that the passive TMD could effectively reduce the seismic responses of dome structure subjected to multi-supported excitation.

Fragility assessment of RC-MRFs under concurrent vertical-horizontal seismic action effects

  • Farsangi, Ehsan Noroozinejad;Tasnimi, Abbas Ali;Mansouri, Babak
    • Computers and Concrete
    • /
    • v.16 no.1
    • /
    • pp.99-123
    • /
    • 2015
  • In this study, structural vulnerability of reinforced concrete moment resisting frames (RC-MRFs) by considering the Iran-specific characteristics is investigated to manage the earthquake risk in terms of multicomponent seismic excitations. Low and medium rise RC-MRFs, which constitute approximately 80-90% of the total buildings stock in Iran, are focused in this fragility-based assessment. The seismic design of 3-12 story RC-MRFs are carried out according to the Iranian Code of Practice for Seismic Resistant Design of Buildings (Standard No. 2800), and the analytical models are formed accordingly in open source nonlinear platforms. Frame structures are categorized in three subclasses according to the specific characteristics of construction practice and the observed seismic performance after major earthquakes in Iran. Both far and near fields' ground motions have been considered in the fragility estimation. An optimal intensity measure (IM) called Sa, avg and beta probability distribution were used to obtain reliable fragility-based database for earthquake damage and loss estimation of RC buildings stock in urban areas of Iran. Nonlinear incremental dynamic analyses by means of lumped-parameter based structural models have been simulated and performed to extract the fragility curves. Approximate confidence bounds are developed to represent the epistemic uncertainties inherent in the fragility estimations. Consequently, it's shown that including vertical ground motion in the analysis is highly recommended for reliable seismic assessment of RC buildings.

Seismic responses of base-isolated buildings: efficacy of equivalent linear modeling under near-fault earthquakes

  • Alhan, Cenk;Ozgur, Murat
    • Smart Structures and Systems
    • /
    • v.15 no.6
    • /
    • pp.1439-1461
    • /
    • 2015
  • Design criteria, modeling rules, and analysis principles of seismic isolation systems have already found place in important building codes and standards such as the Uniform Building Code and ASCE/SEI 7-05. Although real behaviors of isolation systems composed of high damping or lead rubber bearings are nonlinear, equivalent linear models can be obtained using effective stiffness and damping which makes use of linear seismic analysis methods for seismic-isolated buildings possible. However, equivalent linear modeling and analysis may lead to errors in seismic response terms of multi-story buildings and thus need to be assessed comprehensively. This study investigates the accuracy of equivalent linear modeling via numerical experiments conducted on generic five-story three dimensional seismic-isolated buildings. A wide range of nonlinear isolation systems with different characteristics and their equivalent linear counterparts are subjected to historical earthquakes and isolation system displacements, top floor accelerations, story drifts, base shears, and torsional base moments are compared. Relations between the accuracy of the estimates of peak structural responses from equivalent linear models and typical characteristics of nonlinear isolation systems including effective period, rigid-body mode period, effective viscous damping ratio, and post-yield to pre-yield stiffness ratio are established. Influence of biaxial interaction and plan eccentricity are also examined.

Failure Probability of Scoured Pier Foundation under Bi-directional Ground Motions (2방향 지진하중을 받는 세굴된 교각기초의 파괴확률분석)

  • 김상효;마호성;이상우;김영훈
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2002.09a
    • /
    • pp.300-307
    • /
    • 2002
  • Bridge foundation failure considering the effect of local scour around pier foundations under hi-directional seismic excitations is examined in probabilistic perspectives. The seismic responses of bridges with deep foundations are evaluated with a simplified mechanical model, which can consider the local scour effect around the deep foundation in addition to many other components. The probabilistic characteristics of local scour depths are estimated by using the Monte Carlo simulation. The probabilistic characteristics of basic random variables used in the Monte Carlo simulation are determined from the actual hydraulic data collected in middle size streams in Korea. The failure condition of deep foundation is assumed as bearing capacity failure of the ground below the foundation base. The probability of foundation failure of a simply supported bridge with various scour conditions and hi-directional seismic excitations are examined. It is found that the local scour and the recovery duration are critical factors in evaluating the probability of foundation failure. Moreover, the probability of foundation failure under hi-directional seismic excitations is much higher than under uni-directional seismic excitations. Therefore, it is reasonable to consider hi-directional seismic excitations in evaluating the seismic safety of bridge systems scoured by a flood.

  • PDF

Application of Mid-Story Isolation System for Reducing Seismic Response of Space Structure (공간구조물의 지진응답 저감을 위한 중간면진장치의 적용)

  • Kim, Gee-Cheol;Kang, Joo-Won;Kim, Hyung-Man
    • Journal of Korean Association for Spatial Structures
    • /
    • v.9 no.4
    • /
    • pp.97-103
    • /
    • 2009
  • The seismic isolation system reduces the seismic vibration that is transmitted from foundation to upper structure. This seismic isolation system can be classified into base isolation and mid-story isolation by the installation location. In this study, the seismic behavior of arch structure with mid-story isolation is analyzed to verify the effect of seismic isolation. Mid-story isolation is more effective than base isolation to reduce the seismic responses of roof structure. Also, this isolation would be excellent in structural characteristics and construction.

  • PDF

The Seismic Response According to Rise-Span Ratio of the Arch Structure With Seismic Isolation (라이즈-스팬비에 따른 면진 아치구조물의 지진응답 분석)

  • Kim, Su-Geun;Kim, Yu-Seong;Kim, Gee-Cheol;Kang, Joo-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.18 no.1
    • /
    • pp.55-65
    • /
    • 2018
  • In order to reduce the seismic response of the spatial structure, a seismic isolation system with sufficient flexibility is used. The natural period of structure with seismic isolation system got be long to avoid prominent period. In this study, The seismic response of the truss-arch structure, which is modeled in three types according to the rise-span ratio is analyzed on El-centro, Northridge and Artificial Earthquake and compared with the seismic response of the truss-arch structure with lead rubber bearing(LRB). When seismic load is applied to the truss arch with isolation system, the horizontal acceleration response of the truss arch is reduced and vertical seismic response is also reduced. The application of the seismic isolation system is effective in controlling the seismic response.

Assessment of seismic demand and damping of a reinforced concrete building after CFRP jacketing of columns

  • Inci, Pinar;Goksu, Caglar;Tore, Erkan;Binbir, Ergun;Ates, Ali Osman;Ilki, Alper
    • Structural Engineering and Mechanics
    • /
    • v.82 no.5
    • /
    • pp.651-665
    • /
    • 2022
  • While the lateral confinement provided by an FRP jacket to a concrete column is passive in nature, confinement is activated when the concrete expands due to additional compression stresses or significant shear deformations. This characteristic of FRP jacketing theoretically leads to similar initial stiffness properties of FRP retrofitted buildings as the buildings without retrofit. In the current study, to validate this theoretical assumption, the initial stiffness characteristics, and thus, the potential seismic demands were investigated through forced vibration tests on two identical full-scale substandard reinforced concrete buildings with or without FRP retrofit. Power spectral density functions obtained using the acceleration response data captured through forced vibration tests were used to estimate the modal characteristics of these buildings. The test results clearly showed that the natural frequencies and the mode shapes of the buildings are quite similar. Since the seismic demand is controlled by the fundamental vibration modes, it is confirmed using vibration-based full-scale tests that the seismic demands of RC buildings remain unchanged after CFRP jacketing of columns. Furthermore, the damping characteristics were also found similar for both structures.

An improved time-domain approach for the spectra-compatible seismic motion generation considering intrinsic non-stationary features

  • Feng Cheng;Jianbo Li;Zhixin Ding;Gao Lin
    • Nuclear Engineering and Technology
    • /
    • v.55 no.3
    • /
    • pp.968-980
    • /
    • 2023
  • The dynamic structural responses are sensitive to the time-frequency content of seismic waves, and seismic input motions in time-history analysis are usually required to be compatible with design response spectra according to nuclear codes. In order to generate spectra-compatible input motions while maintaining the intrinsic non-stationarity of seismic waves, an improved time-domain approach is proposed in this paper. To maintain the nonstationary characteristics of the given seismic waves, a new time-frequency envelope function is constructed using the Hilbert amplitude spectrum. Based on the intrinsic mode functions (IMFs) obtained from given seismic waves through variational mode decomposition, a new corrective time history is constructed to locally modify the given seismic waves. The proposed corrective time history and time-frequency envelope function are unique for each earthquake records as they are extracted from the given seismic waves. In addition, a dimension reduction iterative technique is presented herein to simultaneously superimpose corrective time histories of all the damping ratios at a specific frequency in the time domain according to optimal weights, which are found by the genetic algorithm (GA). Examples are presented to show the capability of the proposed approach in generating spectra-compatible time histories, especially in maintaining the nonstationary characteristics of seismic records. And numerical results reveal that the modified time histories generated by the proposed method can obtain similar dynamic behaviors of AP1000 nuclear power plant with the natural seismic records. Thus, the proposed method can be efficiently used in the design practices.

A State-of-the-Art of Probabilistic Seismic Fragility Analysis of Critical Structure (핵심 구조물의 확률론적 지진취약도 분석: 기술현황)

  • 조양희
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.04a
    • /
    • pp.226-232
    • /
    • 2000
  • Seismic probabilistic risk assessment(RA) rather than deterministic assessment provides more valuable information and insight for resolving seismic safety issues in nuclear power plant design. In the course of seismic PRA seismic fragility analysis is the most significant and essential phase especially for structural or mechanical engineers. Lately the seismic fragility analysis is taken as a useful tool in general structural engineering as well. A systemized and synthesized procedure or technology related to seismic fragility analysis of critical industrial facilities reflecting the unique experiences and database in Korea is urgently required. This paper gives a state-of-the-art reviews of PRA and briefly summarizes the technologies related to PRA and seismic fragility analysis before developing an unique technology considering characteristics of Korean database. Some key items to be resolved theoretically or technically are extracted and presented for the future research.

  • PDF