DOI QR코드

DOI QR Code

An improved time-domain approach for the spectra-compatible seismic motion generation considering intrinsic non-stationary features

  • Feng Cheng (State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology) ;
  • Jianbo Li (State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology) ;
  • Zhixin Ding (State Key Laboratory of Nuclear Power Safety Monitoring Technology and Equipment, China Nuclear Power Engineering Co., Ltd.) ;
  • Gao Lin (State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology)
  • Received : 2022.05.25
  • Accepted : 2022.11.20
  • Published : 2023.03.25

Abstract

The dynamic structural responses are sensitive to the time-frequency content of seismic waves, and seismic input motions in time-history analysis are usually required to be compatible with design response spectra according to nuclear codes. In order to generate spectra-compatible input motions while maintaining the intrinsic non-stationarity of seismic waves, an improved time-domain approach is proposed in this paper. To maintain the nonstationary characteristics of the given seismic waves, a new time-frequency envelope function is constructed using the Hilbert amplitude spectrum. Based on the intrinsic mode functions (IMFs) obtained from given seismic waves through variational mode decomposition, a new corrective time history is constructed to locally modify the given seismic waves. The proposed corrective time history and time-frequency envelope function are unique for each earthquake records as they are extracted from the given seismic waves. In addition, a dimension reduction iterative technique is presented herein to simultaneously superimpose corrective time histories of all the damping ratios at a specific frequency in the time domain according to optimal weights, which are found by the genetic algorithm (GA). Examples are presented to show the capability of the proposed approach in generating spectra-compatible time histories, especially in maintaining the nonstationary characteristics of seismic records. And numerical results reveal that the modified time histories generated by the proposed method can obtain similar dynamic behaviors of AP1000 nuclear power plant with the natural seismic records. Thus, the proposed method can be efficiently used in the design practices.

Keywords

Acknowledgement

This research was supported by Grant 52178460 from the National Natural Science Foundation of China, DUT20TD209 from the Fundamental Research Funds for the Central Universities.

References

  1. T. Cakir, Evaluation of the effect of earthquake frequency content on seismic behavior of cantilever retaining wall including soil-structure interaction, Soil Dynam. Earthq. Eng. 45 (2013) 96-111. https://doi.org/10.1016/j.soildyn.2012.11.008
  2. M.R. Kianoush, A.R. Ghaemmaghami, The effect of earthquake frequency content on the seismic behavior of concrete rectangular liquid tanks using the finite element method incorporating soil-structure interaction, Eng. Struct. 33 (7) (2011) 2186-2200. https://doi.org/10.1016/j.engstruct.2011.03.009
  3. Y. Yazdani, M. Alembagheri, Nonlinear seismic response of a gravity dam under near-fault ground motions and equivalent pulses, Soil Dynam. Earthq. Eng. 92 (June 2016) (2017) 621-632. https://doi.org/10.1016/j.soildyn.2016.11.003
  4. ASCE, Seismic Design Criteria for Structures, Systems, and Components in Nuclear Facilities, American Society of Civil Engineers, 2019. ASCE/SEI 43-19.
  5. CSA, Design Procedures for Seismic Qualification of Nuclear Power Plants, Canadian Standard Association (CSA), 2020. CSA N289.3-2020.
  6. USNRC, Design Response Spectra for Seismic Design of Nuclear Power Plants, NUREG R.G. 1.60 (Revision 2), U.S. Nuclear Regulatory Commission, 2014.
  7. USNRC, Standard Review Plan-Seismic Design Parameters, SRP 3.7.1, U.S.Nuclear Regulatory Commission, 2014.
  8. ASCE, Seismic Analysis of Safety-Related Nuclear Structures and Commentary, American Society of Civil Engineers, 2016.
  9. J.J. Bommer, B. Acevedo, The use of real earthquake accelerograms as input to dynamic analysis, J. Earthq. Eng. 8 (2004) 43-91.
  10. E.I. Katsanos, A.G. Sextos, G.D. Manolis, Selection of earthquake ground motion records: a state-of-the-art review from a structural engineering perspective, Soil Dynam. Earthq. Eng. 30 (4) (2010) 157-169. https://doi.org/10.1016/j.soildyn.2009.10.005
  11. F. Genovese, D. Aliberti, G. Biondi, E. Cascone, A procedure for the selection of input ground motion for 1D seismic response analysis, in: Earthquake Geotechnical Engineering for Protection and Development of Environment and Constructions, vol. 4, CRC Press, 2019, pp. 2591-2598.
  12. V. Manfredi, A.G. Ozcebe, A. Masi, R. Paolucci, C. Smerzini, Selection and € spectral matching of recorded ground motions for seismic fragility analyses, Bull. Earthq. Eng. 20 (10) (2022) 4961-4987. https://doi.org/10.1007/s10518-022-01393-0
  13. Nicolas Luco, Paolo Bazzurro, Does amplitude scaling of ground motion records result in biased nonlinear structural drift responses? Earthq. Eng. Struct. Dynam. 36 (13) (2007) 1813-1835. https://doi.org/10.1002/eqe.695
  14. Paolo Bazzurro, Nicolas Luco, Do scaled and spectrum-matched near-source records produce biased nonlinear structural responses?, in: Proc. Of the 8th U. S. National Conf. on Earthquake Engin., 2006. San Francisco, California.
  15. F. Genovese, D. Aliberti, G. Biondi, E. Cascone, Geotechnical aspects affecting the selection of input motion for seismic site response analysis, Proceedings of the 7th COMPDYN (2019) 24-26.
  16. F. Genovese, D. Aliberti, G. Biondi, E. Cascone, Influence of soil heterogeneity on the selection of input motion for 1D seismic response analysis, in: National Conference of the Researchers of Geotechnical Engineering, Springer, Cham, 2020, pp. 694-704.
  17. F. Genovese, Influence of soil non-linear behaviour on the selection of input motion for dynamic geotechnical analysis, in: M. Barla, A. Di Donna, D. Sterpi (Eds.), Challenges and Innovations in Geomechanics, IACMAG 2021, vol. 126, Lecture Notes in Civil Engineering, Springer, Cham, 2021, pp. 588-596, 2.
  18. P. Leger, A. Tayebi, P. Paultre, Spectrum-compatible accelerograms for in- elastic seismic analysis of short-period structures located in eastern Canada, Can. J. Civ. Eng. 20 (6) (1993) 951-968. https://doi.org/10.1139/l93-127
  19. A. Preumont, The generation of spectrum compatible accelerograms for the design of nuclear power plants, Earthq. Eng. Struct. Dynam. 12 (1984) 481-497. https://doi.org/10.1002/eqe.4290120405
  20. M.K. Kaul, Spectrum consistent time history generation, in: Proc. ASCE, EM4, 1978, pp. 781-788.
  21. M.K. Kaul, Stochastic characterization of earthquakes through their response spectrum, Earthq. Eng. Struct. Dynam. 6 (5) (1978) 497-509. https://doi.org/10.1002/eqe.4290060506
  22. K. Lilhanand, W.S. Tseng, Generation of Synthetic Time Histories Compatible with Multiple-Damping Response Spectra, SMiRT-9, 1987. Lausanne, K2/10.
  23. K. Lilhanand, W.S. Tseng, Development and application of realistic earthquake time histories compatible with multiple damping response spectra, in: Ninth World Conf, vol. 2, Earth. Engin., Tokyo, Japan, 1988, pp. 819-824.
  24. R.H. Scanlan, K. Sachs, Earthquake time histories and response spectra, J. Eng. Mech. ASCE 100 (4) (1974) 635-655. https://doi.org/10.1061/JMCEA3.0001911
  25. Y.X. Hu, X. He, Phase angle consideration in generating response spectrumcompatible ground motion, Vib, Earthq. Eng. Eng. 6 (2) (1986) 37e51 (in Chinese).
  26. P. Cacciola, A stochastic approach for generating spectrum-compatible fully non-stationary earthquakes, Comput. Struct. 88 (2010) 889-901. https://doi.org/10.1016/j.compstruc.2010.04.009
  27. G. Muscolino, F. Genovese, G. Biondi, E. Cascone, Generation of fully nonstationary random processes consistent with target seismic accelerograms, Soil Dynam. Earthq. Eng. 141 (2021), 106467.
  28. G. Muscolino, F. Genovese, A. Sofi, Reliability bounds for structural systems subjected to a set of recorded accelerograms leading to imprecise seismic power spectrum, ASCE-ASME J. Risk Uncertainty Eng. Syst., Part A: Civ. Eng. 8 (2) (2022), 04022009, 2022.
  29. N.A. Abrahamson, Non-stationary spectral matching, Seismol Res. Lett. 63 (1992) 30.
  30. J. Hancock, J. Watson-Lamprey, N.A. Abrahamson, J.J. Bommer, A. Markatis, E. McCoy, R. Mendis, An improved method of matching response spectra of recorded earthquake ground motion using wavelets, J. Earthq. Eng. 10 (2006) 67-89. https://doi.org/10.1080/13632460609350629
  31. Linda Al Atik, Abrahamson Norman, An improved method for nonstationary spectral matching, Earthq. Spectra 26 (3) (2010) 601-617. https://doi.org/10.1193/1.3459159
  32. Yushan Zhang, Fengxin Zhao, Caihong Yang, Generation of nonstationary ground motions compatible with multidamping response spectra, Bull. Seismol. Soc. Am. 105 (1) (2015) 341-353. https://doi.org/10.1785/0120140038
  33. D. Cecini, A. Palmeri, Spectrum-compatible accelerograms with harmonic wavelets, Comput. Struct. 147 (2015) 26-35. https://doi.org/10.1016/j.compstruc.2014.10.013
  34. Suparno Mukhopadhyay, Sandip Das, Vinay K. Gupta, Wavelet-based generation of accelerogram-consistent, spectrum-compatible motions: new algorithms and short-period overestimation, Soil Dynam. Earthq. Eng. 121 (2019) 327-340. https://doi.org/10.1016/j.soildyn.2019.02.001
  35. Li-Ling Hong, Yu-Chiau Huang, A new algorithm in generating spectrumcompatible ground accelerograms, J. Chin. Inst. Eng. 43 (3) (2020) 241-248. https://doi.org/10.1080/02533839.2019.1708808
  36. Guan Chen, Zhiren Zhu, Jun Hu, Simulation of response spectrum-compatible ground motions using wavelet-based multi-resolution analysis, Measurement and Control 54 (5-6) (2021) 641-646. https://doi.org/10.1177/00202940211013057
  37. A. Luis, Montejo Response spectral matching of horizontal ground motion components to an orientation independent spectrum (RotDnn), Earthq. Spectra 37 (2) (2021) 1127-1144. https://doi.org/10.1177/8755293020970981
  38. F. Genovese, G. Muscolino, A. Palmeri, Influence of different fully nonstationary artificial time histories generation methods on the seismic response of frequency-dependent structures, Proc. 4th International Conference on Uncertainty Quantification in Computational Sciences and Engineering, UNCECOMP 2021 (2021), 25-25.
  39. Konstantin Dragomiretskiy, Dominique Zosso, Variational mode decomposition, IEEE Trans. Signal Process. 62 (3) (2014) 531-544. https://doi.org/10.1109/TSP.2013.2288675
  40. X. Yao, Y. Xu, Recent advances in evolutionary computation, J. Comput. Sci. Technol. 21 (1) (2006) 1-18. https://doi.org/10.1007/s11390-006-0001-4
  41. Shifei Ding, Chunyang Su, Junzhao Yu, An optimizing BP neural network algorithm based on genetic algorithm, Artif. Intell. Rev. 36 (2) (2011) 153-162. https://doi.org/10.1007/s10462-011-9208-z
  42. Seyed Abdonnabi Razavi, Navid Siahpolo, Mehdi Mahdavi Adeli, A new empirical correlation for estimation of EBF steel frame behavior factor under near-fault earthquakes using the genetic algorithm, J. Eng. 2020 (2020), 3684678.
  43. C.H. Yeh, Y.K. Wen, Modeling of non-stationary ground motion and analysis of inelastic structural response, Struct. Saf. 8 (1-4) (1990) 281-298. https://doi.org/10.1016/0167-4730(90)90046-R
  44. J. Wang, L. Fan, S. Qian, J. Zhou, Simulations of non-stationary frequency content and its importance to seismic assessment of structures, Earthq. Eng. Struct. Dynam. 31 (2002) 993-1005. https://doi.org/10.1002/eqe.134
  45. N.E. Huang, Z. Shen, S.R. Long, M.C. Wu, H.H. Shih, Q. Zheng, N.-C. Yen, C.C. Tung, H.H. Liu, The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis, Proc. Royal Soc. A: Math. Phys. Eng. Sci. 454 (1971) (1998) 903-995. https://doi.org/10.1098/rspa.1998.0193
  46. D.A. Gasparini, E.H. Vanmarcke, Simulated Earthquake Motions Compatible with Prescribed Response spectra.Publication No. 76-4.Department of Civil Engineering, Massachusetts Institute of Technology, Boston, USA, 1976.
  47. M. Hirasawa, M. Watabe, Generation of simulated earthquake motions compatible with multi-damping response spectra, in: World Conference on Earthquake Engineering, vol. 2, 1992, pp. 807-810.
  48. A. Giaralis, P.D. Spanos, Wavelet-based response spectrum compatible synthesis of accelerograms-Eurocode application (EC8), Soil Dynam. Earthq. Eng. 29 (1) (2009) 219-235. https://doi.org/10.1016/j.soildyn.2007.12.002
  49. AP1000 Design Control Document (DCD), Tier 2, Chapter 3 Design of Structures, Components, Equipment and Systems, Revision 15. Westinghouse Electric Company LLC, USA.
  50. Q. Xu, J. Chen, C. Zhang, J. Li, C. Zhao, Dynamic analysis of AP1000 shield building considering fluid and structure interaction effects, Nucl. Eng. Technol. 48 (2016) 246-258. https://doi.org/10.1016/j.net.2015.08.013