• Title/Summary/Keyword: Seismic capacity evaluation

Search Result 414, Processing Time 0.027 seconds

Evaluation of Post-earthquake Seismic Capacity of Reinforced Concrete Buildings suffering from earthquakes (지진피해를 받은 철근콘크리트 건물의 잔존내진성능평가)

  • Kang, Dae-Eon;Yi, Waon-Ho
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.105-108
    • /
    • 2005
  • In damage investigation of building structures suffering from earthquake, estimation of residual seismic capacity is essential in order to access the safety of the building against aftershocks and to judge the necessity of repair and restoration. It has been proposed that an evaluation method for post-earthquake seismic capacity of reinforced concrete buildings based. on the residual energy dissipation capacity (the residual seismic capacity ratio )in lateral force-displacement curve of structural members. The proposed method was adopted in the Japanese 'Damage Level Classification Standard' revised in 200l. To evaluate the residual seismic capacity of RC column, experimental tests with positive and negative cyclic loading was carried out using RC building column specimen. Parameters used by the experiment are deformability and member proportion. From the test results, it is appropriated that the residual seismic capacity of RC buildings damaged by earthquakes is evaluated using the method in the Guideline.

  • PDF

Proposed Seismic Performance Evaluation Enhancement for Existing School Building (기존 학교 건축물의 내진성능평가 및 보강방안 제안)

  • Hwang, Ji-Hoon;Jang, Jeong-Hyun;Yang, Kyeong-Seok;Choi, Jae-Hyouk
    • Journal of the Korean Institute of Educational Facilities
    • /
    • v.19 no.4
    • /
    • pp.29-38
    • /
    • 2012
  • Recently large scale earthquake s are occurred around the world following the damage of buildings. So the interest of preparing for earthquake seismic design and seismic performance has becoming high. School buildings are though used for educational purpose; they are also used as emergency shelter for local residents during earthquake disaster. However, the current seismic design ratio of our country (Korea) is 3.7% and if massive earthquake is occurred it follows a serious damage. In order to overcome this situation, seismic performance evaluation is carried out for existing school building and an accurate and appropriate seismic retrofit is required based on performance evaluation to upgrade the existing school buildings. In this paper, nonlinear static analysis on existing school buildings for ATC-40 and FEMA-356 are carried out using the capacity spectrum method to evaluate seismic performance and to determine the need for retrofitting. In addition, after reinforcement to verify the effect of retrofit enhance the seismic performance is applied the seismic performance evaluation is carried out to verify the effect of seismic retrofit time history analysis using nonlinear dynamic analysis is also performed and nonlinear behavior of earthquake load of seismic retrofit of structures was also investigated.

Capacity Spectrum Method for Seismic Performance Evaluation of Multi-Story Building Based on the Story Drift (층간변위를 기반으로 한 다층구조물의 내전성능 평가를 위한 역량스펙트럼법의 개발)

  • Kim, Sun-Pil;Kim, Doo-Kie;Kwak, Hyo-Gyoung;Ko, Sung-Huck;Seo, Hyeong-Yeol
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.205-210
    • /
    • 2007
  • The existing capacity spectrum method (CSM) is based on the displacement based approach for seismic performance and evaluation. Currently, in the domestic and overseas standard concerning seismic design, the CSM to obtain capacity spectrum from capacity curve and demand spectrum from elastic response spectrum is presented. In the multistory building, collapse is affected more by drift than by displacement, but the existing CSM does not work for story drift. Therefore, this paper proposes an improved CSM to estimate story drift of structures through seismic performance and evaluation. It uses the ductility factor in the A-T domain to obtain constant-ductility response spectrum from earthquake response of inelastic system using the drift and capacity curve from capacity analysis of structure.

  • PDF

Determination Process of Drift Capacity for Seismic Performance Evaluation of Steel Tall Buildings (초고층 철골 건축물의 내진성능평가를 위한 Drift Capacity 산정 프로세스)

  • Min, Ji Youn;Oh, Myoung Ho;Kim, Myeong Han;Kim, Sang Dae
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.4
    • /
    • pp.481-490
    • /
    • 2006
  • The actual performance of a building during an earthquake depends on many factors. The prediction of the seismic performance of a new or existing structure is complex, due not only to the large number of factors that need to be considered and the complexity of the seismic response, but also due to the large inherent uncertainties and randomness associated with making these predictions. A central issue of this research is the proper treatment and incorporation of these uncertainties and randomness in the evaluation of structural capacity and response has been adopted in the seismic performance evaluation of steel tall buildings to account for the uncertainties and randomness in seismic demand and capacities in a consistent manner. The basic framework for reliability-based seismic performance evaluation and the key factors for statistical studies were summarized. A total of 36 target structures that represent typical tall steel buildings based on national building code (KBC-2005) were designed for the statistical studies of demand factor s and capacity factors. The incremental dynamic analysis (IDA) approach was examined through the simple steel moment frame building in determination of global drift capacity.

Seismic Performance Evaluation of Building Structures Using Modified Capacity Spectrum (수정된 능력스펙트럼을 이용한 건축구조물의 내진성능평가)

  • 최원호
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.04a
    • /
    • pp.267-274
    • /
    • 2000
  • Current seismic design codes for building structures are based on the method which can provide enough capacity to satisfy objected performance level and exactly evaluate the seismic performance of buildings. The capacity spectrum method using the nonlinear static(pushover) analysis is becoming a popular tool for evaluating the seismic performance of existing and new building structures. By means of a graphical procedure capacity spectrum method esimates the performance level of structure by comparing the capacity of structure with the demand of earthquake ground motion on the structure. In the method the relation between base shear estimated by a nonlinear static analysis and horizontal displacement is used. Capacity spectrum is usually expressed as what represent the responses of the equivalent single degree of freedom (ESDOF) system for the building structures. However there are some problems in converting procedures into ESDOF system which include not considering the effect of higher modes of structures. The objective of this paper is to compare and verify existing methods and suggest the modified capacity spectrum for seismic performance evaluation of building structures.

  • PDF

Post-earthquake capacity evaluation of R/C buildings based on pseudo-dynamic tests

  • Kang, Dae-Eon;Yi, Waon-Ho
    • Structural Engineering and Mechanics
    • /
    • v.24 no.1
    • /
    • pp.91-105
    • /
    • 2006
  • In this paper, post-earthquake capacity evaluation method of reinforced concrete buildings was studied. Substructure pseudo-dynamic test and static loading test of first story column in a four-story R/C building was carried out in order to investigate the validity of the evaluation method proposed in the Damage Assessment Guideline (JBDPA 2001). In pseudo-dynamic test, different levels of damage were induced in the specimens by pre-loading, and input levels of seismic motion, at which the specimens reached to the ultimate stage, were examined. From the experimental result, no significant difference in damage levels such as residual crack width between the specimens under static and pseudo-dynamic loading was found. It is shown that the seismic capacity reduction factors ${\eta}$ can provide a reasonable estimation of post-earthquake seismic capacity of R/C buildings suffered earthquakes.

Procedures of Biaxial Seismic Capacity Test and Seismic Performance Evaluation (수평이축방향 내진역량시험과 내진성능평가 절차)

  • 김재관;김익현;이재호
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2001.04a
    • /
    • pp.453-460
    • /
    • 2001
  • The seismic capacity of columns usually has been tested in uniaxial loading condition. The seismic performance used to be evaluated under the same assumption. Since the real earthquake motion is multi-directional, the effects of multi-directional excitation on the seismic capacity of structures need to be carefully examined. In this paper, a frequency dependent alternate biaxial cyclic loading test is proposed as an evaluation method of seismic capacity under multi-directional excitation. Four test specimens were made and tested to study the degradation of strength, stiffness and ductility under biaxial loading condition. A multi- directional excitation. The capacity is obtained using frequency dependent alternate biaxial cyclic loading test. The orthogonal effect is taken into account by increasing the demand.

  • PDF

Seismic Capacity Evaluation of the Structures with Vertical Irregularities (수직적 비정형성을 지니는 구조물의 내진성능평가)

  • 홍성걸;김남희;하태휴
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2001.09a
    • /
    • pp.208-215
    • /
    • 2001
  • The vertical irregularities occurred in the structure may lessen the overall seismic capacity of the structure. Seismic capacity evaluation guidelines (e.g. FEMA 175, ATC-14) propose the criterion for the vertical irregularities of mass, stiffness and strength respectively. But, the criterion seems groundless and leads us to make a true/false decision only. This study is to draw a reasonable basis on which multi-level grading is possible based fur the evaluation of existing buildings. Time history analysis for 3-,5-, and 10-story steel frame structures has been performed using several earthquake data. ANN (Artificial Neural Network) is introduced to find the relative contribution factor of the irregularities along the irregular position. Also, the application system fur the seismic capacity evaluation can be established using the trained ANN.

  • PDF

Seismic Capacity Evaluation of Bridge Structure using Capacity Spectrum Method (역량스펙트럼법에 의한 교량 구조물의 내진성능평가)

  • 박연수;오백만;박철웅;서병철
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.5
    • /
    • pp.67-73
    • /
    • 2003
  • The present seismic analysis of Road-Bridge Design Standard is on a basis of load-based analysis which lets structures have the strength over load. In this study, the capacity spectrum method, a kind of displacement based method, which is evaluated by displacement of structure, is presented as an alternative to the analysis method based on load. Seismic capacity is performed about the existing reinforced concrete pier which has already secured seismic design by capacity spectrum method. As a result. capacity spectrum method could realistically evaluate the non-elastic behavior of structures easily and quickly and the displacement of structures for variable ground motion level. And it could efficiently apply to an evaluation of seismic capacity about the existing structure and a verification of design for capacity target of the new structure.

A Study on the Current State of Seismic-Resistance and the Feature of Seismic Performance in School Buildings (학교건축물의 내진현황과 내진성능 특성에 관한 연구)

  • Jo, Min-Joo;Lee, Ju-Na
    • Journal of the Korean Institute of Educational Facilities
    • /
    • v.19 no.3
    • /
    • pp.33-40
    • /
    • 2012
  • At present, the problem to secure seismic resistance capacity is one of the most important issue in school buildings. However, the range of facilities to consider retrofit or the proper direction of seismic retrofit haven't provided in details. Therefore in this study, a series of school buildings were chosen as established time, and the structure composition and the seismic performance of the school buildings were investigated to get the comprehensive features of seismic resistance capacity in school buildings. At result, it was presented that the member capacities were less than criteria and structure system was showed the brittle behavior at the collapse prevention level at the school buildings before 1990 year. At the school buildings after 1990 year, though it is hard to get general features for various compositions, it was presented that they have problems for seismic performance evaluation in some buildings at life safety level, specially in the direction of X axis. So, considering the introduction process of seismic criteria in Korea, the school buildings before 2005 year should be examined for seismic resistance capacity and the seismic performance should be examined as well as member capacity to resist seismic.