• 제목/요약/키워드: Seismic acceleration response amplification

검색결과 83건 처리시간 0.028초

Determination of seismic hazard and soil response of a critical region in Turkey considering far-field and near-field earthquake effect

  • Sonmezer, Yetis Bulent;Celiker, Murat
    • Geomechanics and Engineering
    • /
    • 제20권2호
    • /
    • pp.131-146
    • /
    • 2020
  • Evaluation of earthquake impacts in settlements with a high risk of earthquake occurrence is important for the determination of site-specific dynamic soil parameters and earthquake-resistant structural planning. In this study, dynamic soil properties of Karliova (Bingol) city center, located near to the intersection point of the North Anatolian Fault Zone and the East Anatolian Fault Zone and therefore having a high earthquake risk, were investigated by one-dimensional equivalent linear site response analysis. From ground response analyses, peak ground acceleration, predominant site period, 0.2-sec and 1-sec spectral accelerations and soil amplification maps of the study area were obtained for both near-field and far-field earthquake effects. The average acceleration spectrum obtained from analysis, for a near-field earthquake scenario, was found to exceed the design spectra of the Turkish Earthquake Code and Eurocode 8. Yet, the average acceleration spectrum was found to remain below the respective design spectra of the two codes for the far-field earthquake scenario. According to both near- and far-field earthquake scenarios in the study area, the low-rise buildings with low modal vibration durations are expected to be exposed to high spectral acceleration values and high-rise buildings with high modal vibration durations will be exposed to lower spectral accelerations. While high amplification ratios are observed in the north of the study area for the near-distance earthquake scenario, high amplification ratios are observed in the south of the study area for the long-distance earthquake scenario.

Evaluation of seismic strengthening techniques for non-ductile soft-story RC frame

  • Karki, Prajwol;Oinam, Romanbabu M.;Sahoo, Dipti Ranjan
    • Advances in concrete construction
    • /
    • 제9권4호
    • /
    • pp.423-435
    • /
    • 2020
  • Open ground story (OGS) reinforced concrete (RC) buildings are vulnerable to the complete collapse or severe damages under seismic actions. This study investigates the effectiveness of four different strengthening techniques representing the local and global modifications to improve the seismic performance of a non-ductile RC OGS frame. Steel caging and concrete jacketing methods of column strengthening are considered as the local modification techniques, whereas steel bracing and RC shear wall systems are selected as the global strengthening techniques in this study. Performance-based plastic design (PBPD) approach relying on energy-balance concept has been adopted to determine the required design force demand on the strengthening elements. Nonlinear static and dynamic analyses are carried out on the numerical models of study frames to assess the effectiveness of selected strengthening techniques in improving the seismic performance of OGS frame.. Strengthening techniques based on steel braces and RC shear wall significantly reduced the peak interstory drift response of the OGS frame. However, the peak floor acceleration of these strengthened frames is amplified by more than 2.5 times as compared to that of unstrengthened frame. Steel caging technique of column strengthening resulted in a reasonable reduction in the peak interstory drift response without substantial amplification in peak floor acceleration of the OSG frame.

계측 기록의 설계스펙트럼 부합 가상 지진 변환 방법 (Conversion of Recorded Ground Motion to Virtual Ground Motion Compatible to Design Response Spectra)

  • 지혜연;최다슬;김정한
    • 한국지진공학회논문집
    • /
    • 제25권1호
    • /
    • pp.33-42
    • /
    • 2021
  • The design response spectrum presented in the seismic design standard reflects the characteristics of the tectonic environment at a site. However, since the design response spectrum does not represent the ground motion with a specific earthquake magnitude or distance, input ground motions for response history analysis need to be selected reasonably. It is appropriate to use observed ground motions recorded in Korea for the seismic design. However, recently recorded ground motions in the Gyeongju (2016) or Pohang (2017) earthquakes are not compatible with the design response spectrum. Therefore, it is necessary to convert the recorded ground motion in Korea to a model similar to the design response spectrum. In this study, several approaches to adjust the spectral acceleration level at each period range were tested. These are the intrinsic and scattering attenuation considering the earthquake environment, magnitude, distance change by the green function method, and a rupture propagation direction's directivity effect. Using these variables, the amplification ratio for the representative natural period was regressed. Finally, the optimum condition compatible with the design response spectrum was suggested, and the validation was performed by converting the recorded ground motion.

동적 원심모형시험을 통한 지반 및 상부 구조물의 지진 하중 특성 (Dynamic Centrifuge Modeling for Evaluating Seismic Loads of Soil-Foundation-Structures)

  • 이세현;김동수;추연욱;박홍근;김동관
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2010년도 추계 학술발표회
    • /
    • pp.192-200
    • /
    • 2010
  • Korea is part of a region of low or moderate seismic zone in which few earthquakes have been monitored, so it is difficult to approve design ground motions and seismic responses on structures from response spectrum. In this study, a series of dynamic centrifuge model tests for demonstrating seismic amplification characteristics in soil-foundation-structure system were performed using electro-hydraulic shaking table mounted on the KOCED 5.0 m radius beam centrifuge at KAIST in Korea. The soil model were prepared by raining dry sand and $V_S$ profiles were determined by performing bender element tests before shaking. The foundation types used in this study are shallow embedded foundation and deep basement fixed on the bottom. Total 7 building structures were used and the response of building structures were compared with response spectrum from the acceleration records on surface.

  • PDF

Seismic behavior of the shallow clayey basins subjected to obliquely incident wave

  • Khanbabazadeh, Hadi;Iyisan, Recep;Ozaslan, Bilal
    • Geomechanics and Engineering
    • /
    • 제31권2호
    • /
    • pp.183-195
    • /
    • 2022
  • Under the effects of the near-field earthquakes, the incident angle of the incoming wave could be different. In this study, the influences of some parameters such as incident angle, basin edge, peak ground acceleration level of the bedrock motion as well as different clay types with different consistency on the amplification behavior of the shallow basins are investigated. To attain this goal, the numerical analyses of the basins filled with three different clay types are performed using a fully nonlinear method. The two dimensional models of the basins are subjected to a set of strong ground motions with different peak ground acceleration levels and three different incident angles of 30◦, 45◦ and 90◦ with respect to the horizontal axes. The results show the dominant effect of the obliquely subjected waves at most cases. The higher effect of the 45◦ incident angle on the basin response was concluded. In the other part of this study, the spectral amplification curves of the surface points were compared. It was seen that the maximum spectral amplification of different surface points occurs at different periods. Also, it is affected by the increase in the peak acceleration level of the incoming motions.

Seismic response analysis of buried oil and gas pipelines-soil coupled system under longitudinal multi-point excitation

  • Jianbo Dai;Zewen Zhao;Jing Ma;Zhaocheng Wang;Xiangxiang Ma
    • Earthquakes and Structures
    • /
    • 제26권3호
    • /
    • pp.239-249
    • /
    • 2024
  • A new layered shear continuum model box was developed to address the dynamic response issues of buried oil and gas pipelines under multi-point excitation. Vibration table tests were conducted to investigate the seismic response of buried pipelines and the surrounding soil under longitudinal multi-point excitation. A nonlinear model of the pipeline-soil interaction was established using ABAQUS finite element software for simulation and analysis. The seismic response characteristics of the pipeline and soil under longitudinal multi-point excitation were clarified through vibration table tests and simulation. The results showed good consistency between the simulation and tests. The acceleration of the soil and pipeline exhibited amplification effects at loading levels of 0.1 g and 0.2 g, which significantly reduced at loading levels of 0.4 g and 0.62 g. The peak acceleration increased with increasing loading levels, and the peak frequency was in the low-frequency range of 0 Hz to 10 Hz. The amplitude in the frequency range of 10 Hz to 50 Hz showed a significant decreasing trend. The displacement peak curve of the soil increased with the loading level, and the nonlinearity of the soil resulted in a slower growth rate of displacement. The strain curve of the pipeline exhibited a parabolic shape, with the strain in the middle of the pipeline about 3 to 3.5 times larger than that on both sides. This study provides an effective theoretical basis and test basis for improving the seismic resistance of buried oil and gas pipelines.

Slope topography effect on the seismic response of mid-rise buildings considering topography-soil-structure interaction

  • Shabani, Mohammad J.;Shamsi, Mohammad;Ghanbari, Ali
    • Earthquakes and Structures
    • /
    • 제20권2호
    • /
    • pp.187-200
    • /
    • 2021
  • The main factor for the amplification of ground motions near the crest or the toe of a slope is the reflection of the incident waves. The effects of the slope topography on the surrounding lands over the crest or at the toe can amplify the seismic responses of buildings. This study investigates the seismic performance of the slope topography and three mid-rise buildings (five, ten, and fifteen-storey) located near the crest and toe of the slope by 3D numerical analysis. The nonlinear model was used to represent the real behavior of building and ground elements. The average results of seven records were used in the investigations. Based on the analysis, the amplification factor of acceleration near the crest and toe of the slope was the most effective at distances of 2.5 and 1.3 times the slope height, respectively. Accordingly, the seismic performance of buildings was studied at a distance equal to the height of the slope from the crest and toe. The seismic response results of buildings showed that the slope topography to have little impact on up to five-storey buildings located near the crest. Taking into account a topography-soil-structure interaction system increases the storey displacement and base shear in the building. Accordingly, in topography-soil-structure interaction analyses, the maximum lateral displacement was increased by 71% and 29% in ten and fifteen-storey buildings, respectively, compare to the soil-structure interaction system. Further, the base shear force was increased by 109% and 78% in these buildings relative to soil-structure interaction analyses.

복합면진장치를 적용한 무정전전원장치의 1축 진동대실험 기반 동적특성 분석 (Dynamic Characteristic of the Seismic Performance of Uninterruptible Power Supply with Combined Isolator Using Shaking Table Test)

  • 이지언;이승재;박원일;최경규
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제26권1호
    • /
    • pp.19-28
    • /
    • 2022
  • 본 연구에서는 전력·통신 설비로 분류되는 무정전전원장치의 내진성능을 향상하기 위하여 고감쇠고무와 와이어 면진장치를 결합한 3가지 유형의 복합면진장치를 개발하였다. 복합면진장치를 적용한 UPS의 동적 특성을 분석하기 위하여 단축 진동대 실험을 수행하였다. 진동대 실험은 국외 진동대 실험 기준인 ICC-ES AC156을 따라 수행하였으며 기준에서 제시하고 있는 요구응답스텍트럼을 기반으로 입력 지진파를 생성하였다. 입력 지진파의 스케일을 50%에서 200%까지 증가시키며 가진하였다. 진동대 실험을 바탕으로 UPS의 손상양상 및 고유진동수, 감쇠비. 동증폭계수, 상대변위 등 동적특성을 비교 및 분석하였다. 3가지 유형의 복합면지장치를 적용함에 따라 UPS의 내진성능이 향상되었으며 이를 통해 개발 면진장치의 성능을 검증하였다.

이차원 지반 유한요소 모델링을 통한 사면상부 지진지반운동의 지표면 지형효과 분석 (Assessment of Surface Topographic Effect in Earthquake Ground Motion on the Upper Slope via Two-Dimensional Geotechnical Finite Element Modeling)

  • 선창국;방기호;조완제
    • 지질공학
    • /
    • 제25권2호
    • /
    • pp.201-213
    • /
    • 2015
  • 지진지반운동 증폭을 야기하는 부지효과는 지하 토사 조건과 구조뿐만 아니라 지표 지형에 의해 지대한 영향을 받는다. 그럼에도 불구하고 국내에서는 최근 수십 년에 걸쳐 주로 지질 및 토사 조건과 관련된 부지고유 지진응답 연구들이 대부분을 차지해 왔으며, 이러한 국부 지질 효과는 잘 정립되어 현행 국내 내진설계기준들에 반영되고 있다. 이 연구에서는 현행 국내 내진설계기준에서는 고려되고 있지 않은 지표 지형효과 평가의 일환으로, 세 가지 다른 경사각 조건의 유한요소 지반 모델링을 통한 이차원 지진 부지응답 해석을 수행하였다. 이차원 유한요소 해석 결과인 최대 지반가속도와 가속도 응답스펙트럼을 추가적으로 수행한 일차원 유한요소 해석 결과와 비교하였다. 최대 지반가속도와 스펙트럴가속도는 대부분의 사면상부 영역에서 지형효과로 인해 이차원이 일차원 해석에 비해 크게 나타났다.

이중 슬립마찰면을 이용한 면진장치의 면진성능평가 (Seismic Performance Evaluation of Seismic Isolation Device with Double Slip Friction Surface)

  • 손수원;권정호;김정곤;정용규;황은동
    • 한국재난정보학회 논문집
    • /
    • 제16권4호
    • /
    • pp.712-722
    • /
    • 2020
  • 연구목적: 최근 국내 규모 5.0이상의 지진으로 인한 피해 발생이 증가하고 있다. 지진이 발생하면 구조물 이외에도 내부설비, 전력기기 등에 피해를 주게 된다. 이에 본 논문에서는 지진으로 인한 배전반과 같은 전기기기의 피해를 저감시킬 수 있는 이중 슬립마찰면이 있는 면진장치를 개발하였으며, 이에 대한 면진성능을 평가하였다. 연구방법: 면진성능을 평가하기 위해 진동대 시험을 수행하였으며, 면진장치 유무에 따른 성능비교를 수행하였다. 다양한 주파수와 가속도 수준에 대한 응답가속도 및 변위를 비교하여 면진장치의 감쇠효과를 분석하였다. 연구결과: 시험결과, 면진장치가 설치되어 있는 경우가 면진장치가 설치되어 있지 않은 경우보다 가속도 증폭이 최대 42% 작았다. 이는 면진장치의 이중슬립마찰면 사이에서 발생한 변위가 지진에너지를 소산하는 역할을 하여 증폭에너지가 감소된 것으로 판단된다. 결론: 이중 슬립마찰면을 적용한 면진장치는 약진보다는 강진에서 지진감쇠효과가 더 컸으며, 주파수가 클수록 지진감쇠효과가 더 좋았다. 따라서, 배전반과 같은 전기기기에 적용하여 지진에너지를 감쇠하는 작용을 할 수 있을 것으로 판단된다.