A seismic waveform inversion for prestack seismic data based on the Gauss-Newton method is presented. The Gauss-Newton method for seismic waveform inversion was proposed in the 80s but has rarely been studied. Extensive computational and memory requirements have been principal difficulties. To overcome this, we used different sizes of grids in the inversion stage from those of grids in the wave propagation simulation, temporal windowing of the simulation and approximation of virtual sources for calculating partial derivatives, and implemented this algorithm on parallel supercomputers. We show that the Gauss-Newton method has high resolving power and convergence rate, and demonstrate potential applications to real seismic data.
Seismic waveform estimation is based on the assumption that the seismic trace tying a well is one dimensional convolution of the propagating seismic waveform and the reflectivity series derived from well logs (sonic and density). With this assumption, the waveform embedded in a seismic trace can be estimated using a Wiener match filter. In this paper, I experimented a preprocessing procedure that applies both on the seismic trace and on the reflectivity series. The procedure is based on the assumption that the travel time can be estimated better from the seismic trace and that the instantaneous reflectivity values can be measured better on the well log. Thus the procedure is, 1) start-time adjustment and dynamic differential stretches are applied on the sonic log, and 2) seismic amplitudes are balanced such that the low frequency part of the seismic are matched to that of the reflectivities derived from well logs.
Waveform inversion requires extracting a reliable low frequency content of seismic data for estimating of the low wave number velocity model. The low frequency content of the seismic data is usually discarded or neglected because of the band-limited response of the source and the receivers. In this study, however small the spectral of the low frequency seismic data is, we assume that it is possible to extract a reliable phase information of the low frequency from the seismic data and use it in waveform inversion. To this end, we exploit the frequency domain finite element modeling and source-receiver reciprocity to calculate the $Frech\`{e}t$ derivative of the phase of the seismic data with respect to the earth model parameter such as velocity, and then apply a damped least squares method to invert the phase of the seismic data. Through numerical example, we will attempt to demonstrate the feasibility of our method in estimating the correct velocity model for prestack depth migration.
Ku, Bon-Hwa;Kim, Gwan-Tae;Min, Jeong-Ki;Ko, Hanseok
Journal of the Korea Society of Computer and Information
/
v.24
no.1
/
pp.33-39
/
2019
In this paper, we propose deep convolutional neural network(CNN) with bottleneck structure which improves the performance of earthquake classification. In order to address all possible forms of earthquakes including micro-earthquakes and artificial-earthquakes as well as large earthquakes, we need a representation and classifier that can effectively discriminate seismic waveforms in adverse conditions. In particular, to robustly classify seismic waveforms even in low snr, a deep CNN with 1x1 convolution bottleneck structure is proposed in raw seismic waveforms. The representative experimental results show that the proposed method is effective for noisy seismic waveforms and outperforms the previous state-of-the art methods on domestic earthquake database.
Choi, Yeon Jin;Shin, Sung Ryul;Ha, Ji Ho;Chung, Woo Keen;Kim, Won Sik
Geophysics and Geophysical Exploration
/
v.17
no.4
/
pp.231-241
/
2014
Recently, single channel seismic survey for engineering purpose have been used widely taking advantage of simple processing. However it is very difficult to obtain high fidelity subsurface image by single channel seismic due to insufficient fold coverage. Recently, seismic waveform inversion in multi channel seismic survey is utilized for accurate subsurface imaging even in complex terrains. In this paper, we propose the seismic waveform inversion algorithm for velocity model building using a single channel seismic data. We utilize the Gauss-Newton method and assume that subsurface model is 1-Dimensional. Seismic source estimation technique is used and offset effect is also corrected by removing delay time by offset. Proposed algorithm is verified by applying modified Marmousi2 model, and applied to field data set obtained in port of Busan.
Journal of the Earthquake Engineering Society of Korea
/
v.13
no.5
/
pp.23-29
/
2009
On December 13, 1996, an earthquake with local magnitude (M$_L$) 4.5 occurred in the Yeongwol area of South Korea. The epicenter was 37.2545$^{\circ}$N and 128.7277$^{\circ}$E, which is located inside the Okcheon Fold Belt. The waveform inversion analysis was carried out to estimate source parameters of the event according to the filtering bandwidth of seismic data. Using 0.02$\sim$0.2 Hz filtering bandwidth, focal depth and seismic moment were estimated to be 6 km and 1.3$\times$10$^{16}$ N$\cdot$m, respectively. This seismic moment corresponds to the moment magnitude (M$_W$) 4.7. The focal mechanism by the waveform inversion and P wave first motion polarity analysis is a strike slip faulting including a small thrust component, and the direction of P-axis is ENE-WSW. The moment magnitude estimated by spectral analysis was 4.8, which is similar to that estimated by waveform inversion. Average stress drop was estimated to be 14.3 MPa.
We propose a waveform inversion method for SH-wave data obtained in a shallow seismic refraction survey, to determine a 2D inhomogeneous S-wave profile of shallow soils. In this method, a 2.5D equation is used to simulate SH-wave propagation in 2D media. The equation is solved with the staggered grid finite-difference approximation to the 4th-order in space and 2nd-order in time, to compute a synthetic wave. The misfit, defined using differences between calculated and observed waveforms, is minimised with a hybrid heuristic search method. We parameterise a 2D subsurface structural model with blocks with different depth boundaries, and S-wave velocities in each block. Numerical experiments were conducted using synthetic SH-wave data with white noise for a model having a blind layer and irregular interfaces. We could reconstruct a structure including a blind layer with reasonable computation time from surface seismic refraction data.
Purpose: This study aims to design and verify an onsite EEWS that extracts the P-wave from a single seismic station and deduce the PGV. Method: The P-wave properties of Pd, Pv, and Pa were calculated by using 12 seismic waveform data extracted from historic seismic records in Korea, and the PGVs were computed using empirical equation on the P properties - PGV relationship and compared with the observed values. Results: Comparison of the observed and estimated PGVs within the alarm level shows the error rate of 86.7% as minimum. By reducing the PTW to 2 seconds, the alarm time can be shortened by 1 second and the seismic blind zone near the epicenter can be shortened by 6 Km. Conclusion: Through this study, we confirmed the availability of the on-site EEWS in Korea. For practical use, it is necessary to develop regression formula and algorithm reflect local effect in Korea by increasing the number of seismic waveform data through continuous observation, and to eliminate the noise from the site.
In this study, an acoustic full-waveform inversion using Adam optimizer was proposed. The steepest descent method, which is commonly used for the optimization of seismic waveform inversion, is fast and easy to apply, but the inverse problem does not converge correctly. Various optimization methods suggested as alternative solutions require large calculation time though they were much more accurate than the steepest descent method. The Adam optimizer is widely used in deep learning for the optimization of learning model. It is considered as one of the most effective optimization method for diverse models. Thus, we proposed seismic full-waveform inversion algorithm using the Adam optimizer for fast and accurate convergence. To prove the performance of the suggested inversion algorithm, we compared the updated P-wave velocity model obtained using the Adam optimizer with the inversion results from the steepest descent method. As a result, we confirmed that the proposed algorithm can provide fast error convergence and precise inversion results.
Kim, Jong-Wook;Cho, Sung-Jun;Park, Sam-Gyu;Sung, Nark-Hoon;Song, Young-Soo
한국지구물리탐사학회:학술대회논문집
/
2007.06a
/
pp.291-296
/
2007
We measured potential waveform of load, displacement, micro electric signal generated by rock and mortar fracture using PXI A/D Converter. The rock type used for measurement was used granite, limestone and sandstone, and mortar specimen. we made measuring equipment of physical properties to confirm basic information of physical properties, measured physical properties of rock engineering, electric resistivity and seismic velocity. Potential waveform system was built using PXI A/D Converter and measured potential waveform of load, displacement, micro-electric signal generated using this during uniaxial compressive test by the specimen finished such test of physical properties. Using the saturated rock and mortar specimen, micro electric signal increased, and It didn't increase a signal in dried rock and mortar specimen according as load and strain rate increases. But signal also increased in saturated or dried specimen in case of sandstone. It was possible to check the close correlation relationship the signal and fracture behavior by a compressive load as the signal of fracture position was increased bigger than the other position. It was also possible to check the correlation relationship between physical properties and micro geo-electric signal.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.