• 제목/요약/키워드: Seismic Retrofit

검색결과 387건 처리시간 0.025초

Experimental and numerical investigation of RC frames strengthened with a hybrid seismic retrofit system

  • Luat, Nguyen-Vu;Lee, Hongseok;Shin, Jiuk;Park, Ji-Hun;Ahn, Tae-Sang;Lee, Kihak
    • Steel and Composite Structures
    • /
    • 제45권4호
    • /
    • pp.563-577
    • /
    • 2022
  • This paper presents experimental and numerical investigations of a new seismic enhancement method for existing reinforced concrete (RC) frames by using an external sub-structure, the hybrid seismic retrofit method (HSRM) system. This retrofit system is an H-shaped frame bolt-connected to an existing RC frame with an infilled-concrete layer between their gaps. Two RC frames were built, one with and one without HSRM, and tested under cyclic loading. The experimental findings showed that the retrofitted RC frame was superior to the non-retrofitted specimen in terms of initial stiffness, peak load, and energy dissipation capacity. A numerical simulation using a commercial program was employed for verification with the experiments. The results obtained from the simulations were consistent with those from the experiments, indicating the finite element (FE) models can simulate the seismic behaviors of bare RC frame and retrofitted RC frame using HSRM.

철골 끼움가새골조로 보강된 학교건물의 내진성능평가를 위한 비선형 해석 모델에 관한 연구 (Study on the Nonlinear Analysis Model for Seismic Performance Evaluation of School Buildings Retrofitted with Infilled Steel Frame with Brace)

  • 유석형;고관욱
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제26권4호
    • /
    • pp.65-72
    • /
    • 2022
  • 최근 국내 지진으로 인한 건축물의 피해는 주로 학교건물과 필로티형 다가구 주택에서 발생함으로써 동일한 형식의 건물에 대한 내진보강 필요성을 부각시켰다. 학교시설 내진보강사업은 초기에 연성보강방법으로서 댐퍼를 활용한 다양한 특허공법들이 충분한 검증 절차 없이 적용되었다. 그러나 「학교시설 내진성능평가 및 보강 매뉴얼, 2021」에서는 특허공법 적용시 별도의 엄격한 검증절차를 통하여 적용토록 하고 대신 일반공법으로서 강도/강성보강공법의 활성화를 유도하였다. 학교건물의 강도/강성 보강공법으로서 활발히 적용되고 있는 철골 끼움가새골조보강을 위한 내진선능평가 시 실무에서는 일부 제한된 조건에서 안전측의 내진성능평가 결과를 도출할 것으로 판단하여 기존 RC 부재에 철골가새만을 직접연결하여 해석모델을 구성하고 있다. 그러나 철골 끼움가새골조의 해석모델에서 프레임을 제거할 경우 강성감소로 인한 보강 부근의 기존 RC부재에 발생하는 하중감소는 매우 클 것으로 사료되며 이는 보강부위 기초보강 유무 검토에도 영향을 미칠 것으로 판단된다. 따라서 본 연구에서는 철골 끼움가새골조를 이용하여 저층 RC 학교건물 내진보강 시 성능평가를 위한 해석모델에 대하여 철골 프레임 고려 유무, 프레임 링크방식 등을 변수로 한 예비해석과 실제 3층 학교 건물에 대한 비선형 정적해석에 따른 내진성능평가 를 수행하였으며, 변수별 예비해석 및 푸쉬오버 해석결과를 비교함으로써 합리적인 해석모델 설정을 위한 기초자료를 제시하였다.

External retrofit of beam-column joints in old fashioned RC structures

  • Adibi, Mahdi;Marefat, Mohammad S.;Arani, Kamyar Karbasi;Zare, Hamid
    • Earthquakes and Structures
    • /
    • 제12권2호
    • /
    • pp.237-250
    • /
    • 2017
  • There has been increasing attention in many countries on seismic retrofit of old fashioned RC structures in recent years. In such buildings, the joints lack transverse reinforcement and suffer inadequate seismic dimensional requirements and the reinforcement is plain bar. The behavior of the joints is governed by sliding of steel bars and diagonal shear failure is less influential. Different methods to retrofit beam-column joints have been proposed in the literature such as wrapping the joint by FRP sheets, enlargement of the beam-column joint, and strengthening the joint by steel sheets. In this study, an enlargement technique that uses external prestressed cross ties with steel angles is examined. The technique has already been used for substructures reinforced by deformed bars and has advantages such as efficient enhancement of seismic capacity and lack of damage to the joint. Three reference specimens and two retrofitted units are tested under increasing lateral cyclic load in combination with two levels of axial load. The reference specimens showed relatively low shear strength of 0.150${\surd}$($f_c$) and 0.30${\surd}$($f_c$) for the exterior and interior joints, respectively. In addition, relatively brittle behavior was observed and large deformations extended into the panel zone of the joints. The retrofit method has increased ductility ratio of the interior beam-column joints by 63%, and energy dissipation capacity by 77%, relative to the control specimen; For external joints, these values were 11%, and 94%. The retrofit method has successfully relocated the plastic joints far from the column face. The retrofit method has improved shear strength of the joints by less than 10%.

원형개구부가 있는 강판 전단벽 시스템을 적용한 학교 건축물의 내진성능평가 (Seismic Performance Evaluation of School Building Reinforced by Circular-Opening Steel Shear Wall System)

  • 이유현;이수헌;이희두;신경재
    • 대한건축학회논문집:구조계
    • /
    • 제34권1호
    • /
    • pp.19-26
    • /
    • 2018
  • After the Gyeongju earthquake, school buildings were designated as earthquake shelters. However, the ratio of designed for seismic of domestic school buildings is only 23.2% in Korea, and it is necessary to secure the seismic safety of those. Therefore, in this paper, a target building was selected before the seismic design criteria was established and the seismic performance of the building was evaluated. After the evaluation, reinforcement of the building was carried out using seismic retrofit systems which was previously tested. For this purpose, the evaluation was carried out using OpenSees program and the reliability of the seismic retrofit systems was also verified. In this way, we can more precisely reproduce the response of the building in case of actual earthquake and predict damage of the earthquake in the future.

변위계수법 및 약산식 내진성능평가에 기초한 비보강 조적조 건물의 내진보강 요구강도 산정 (Strength Demand Calculation for Retrofitting Unreinforced Masonry Buildings Based on the Displacement Coefficient Method and the Preliminary Seismic Evaluation Procedure)

  • 설윤정;박지훈;곽병훈;김대호
    • 한국지진공학회논문집
    • /
    • 제26권1호
    • /
    • pp.31-38
    • /
    • 2022
  • Based on the nonlinear static analysis and the approximate seismic evaluation method adopted in "Guidelines for seismic performance evaluation for existing buildings, two methods to calculate strength demand for retrofitting individual structural walls in unreinforced masonry buildings are proposed." The displacement coefficient method to determine displacement demand from nonlinear static analysis results is used for the inverse calculation of overall strength demand required to reduce the displacement demand to a target value meeting the performance objective of the unreinforced masonry building to retrofit. A preliminary seismic evaluation method to screen out vulnerable buildings, of which detailed evaluation is necessary, is utilized to calculate overall strength demand without structural analysis based on the difference between the seismic demand and capacity. A system modification factor is introduced to the preliminary seismic evaluation method to reduce the strength demand considering inelastic deformation. The overall strength demand is distributed to the structural walls to retrofit based on the wall stiffness, including the remaining walls or otherwise. Four detached residential houses are modeled and analyzed using the nonlinear static and preliminary evaluation procedures to examine the proposed method.

Steel hexagonal damper-brace system for efficient seismic protection of structures

  • Mohammad Mahdi, Javidan;Jinkoo, Kim
    • Steel and Composite Structures
    • /
    • 제45권5호
    • /
    • pp.683-695
    • /
    • 2022
  • Conventional braces are often used to provide stiffness to structures; however due to buckling they cannot be used as seismic energy dissipating elements. In this study, a seismic energy dissipation device is proposed which is comprised of a bracing member and a steel hysteretic damper made of steel hexagonal plates. The hexagonal shaped designated fuse causes formation of plastic hinges under axial deformation of the brace. The main advantages of this damper compared to conventional metallic dampers and buckling-restrained braces are the stable and controlled energy dissipation capability with ease of manufacture. The mechanical behavior of the damper is formulated first and a design procedure is provided. Next, the theoretical formulation and the efficiency of the damper are verified using finite element (FE) analyses. An analytical model of the damper is established and its efficiency is further investigated by applying it to seismic retrofit of a case study structure. The seismic performance of the structure is evaluated before and after retrofit in terms of maximum interstory drift ratio, top story displacement, residual displacement, and energy dissipation of dampers. Overall, the median of maximum interstory drift ratios is reduced from 3.8% to 1.6% and the residual displacement decreased in the x-direction which corresponds to the predominant mode shape of the structure. The analysis results show that the developed damper can provide cost-effective seismic protection of structures.

기존 철근콘크리트 벽체의 연성확보를 위한 내진보강 방안 (Seismic Retrofit of Existing RC Walls for Ductility Enhancement)

  • 김장훈;좌동훈
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2001년도 가을 학술발표회 논문집
    • /
    • pp.1149-1154
    • /
    • 2001
  • A Seismic retrofit idea based on a first principle is proposed for existing RC walls under various level of axial loading. In application of the proposed retrofit method, designers can choose the size and shape of boundary elements of wall sections for a required level of ductility. For this axial load ratio, steel ratio, and strength of concrete and steel are considered as design parameters. In order to show the usage of the idea, several design charts are presented with an application example.

  • PDF

Seismic retrofit of structures using added steel column friction dampers

  • Mohammad Mahdi Javidan;Asad Naeem;Jinkoo Kim
    • Steel and Composite Structures
    • /
    • 제49권3호
    • /
    • pp.257-270
    • /
    • 2023
  • In this study, the feasibility and applicability of a friction damper with a vertical installation scheme are investigated. This device is composed of a steel section and two friction hinges at both ends which dissipate seismic energy. Due to its small width and vertical installation scheme, the proposed damper can minimize the interference with architectural functions. To evaluate the performance of the proposed damper, its mechanical behavior is theoretically evaluated and the required formulas for the yield strength and elastic stiffness are derived. The theoretical formulas are verified by establishing the analytical model of the damper in the SAP2000 software and comparing their results. To further investigate the performance of the developed damper, the provided analytical model is applied to a 4-story reinforced concrete (RC) structure and its performance is evaluated before and after retrofit under the Maximum Considered Earthquake (MCE) hazard level. The seismic performance is thoroughly evaluated in terms of maximum interstory drift ratio, displacement time history, residual displacement, and energy dissipation. The results show that the proposed damper can be efficiently used to protect the structure against seismic loads.

학교 건축물의 내진 보강을 위한 가새 - 높이비에 관한 연구 (A Study on Brace-height Ratio for Seismic Retrofit of School Building)

  • 이화정;변대근;윤성기
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제24권4호
    • /
    • pp.10-17
    • /
    • 2020
  • 최근 국내에 발생한 지진으로 인해 많은 학교 건물들에 크고 작은 피해가 발생하였다. 학교 건축물은 재난 발생시 대피소로 사용되는 중요 건물로서 비내진 건축물일 경우 여러 방법으로 내진 보강이 진행 중이다. 내진보강 공법 중 내부 철골가새골조형 공법은 비교적 시공이 용이하고 성능이 우수하여 많이 사용되고 있다. 본 연구에서는 기존 철근콘크리트 학교 건물에 철골 가새 골조를 적용하여 수평반복가력해석을 수행하여 최대전단력 및 변위를 비교검토 하였다. 그 결과로 해석 모델의 적정성을 확인하였고, 기존 학교 건축물의 1경간에 대한 가새- 높이비에 따른 효과를 비교 검토하였다. 가새- 높이비 0.3의 모델에서 최대 전단내력과 변위관계에서의 적정성을 확인할 수 있었다. 또한, 실제 비 내진 철근콘크리트 학교 건축물에 철골가새를 적용시켜 가새- 높이비에 따른 비선형정적해석을 수행하여 내진 성능을 검토하였다. 그 결과, 가새- 높이비 0.3에서 부재의 붕괴가 없는 적절한 내진효과를 보이고 있다. 가새 높이의 증가는 최대전단력과 인명안전 수준의 성능점에서 최대 하중을 증가시키는 효과를 나타내고 있으나, 횡강성의 증가로 인한 가새 골조 주변 부재의 붕괴가 발생하므로, 적정한 가새 높이에 따른 내진 보강이 필요하다는 것을 알 수 있었다. 따라서, 기존 학교건축물의 가새 골조의 내진보강 설계에 있어서 가새 높이에 따른 보강해석을 고려한 후 가새 높이를 선정하고 적절한 보강 개수와 보강위치를 정하는 것이 필요한 것으로 사료된다.

외부벽체 강도증진형 보강이 적용된 비보강 조적조 건물의 내진성능평가 (Seismic Performance Evaluation of Unreinforced Masonry Buildings Retrofitted by Strengthening External Walls)

  • 설윤정;박지훈
    • 한국지진공학회논문집
    • /
    • 제24권2호
    • /
    • pp.77-86
    • /
    • 2020
  • Nonlinear static analysis and preliminary evaluation were performed in this study to evaluate the seismic performance of unreinforced masonry buildings subjected to various soil conditions based on the revised Korean Building Code. Preliminary evaluation scores and nonlinear static analyses indicated that all buildings were susceptible to collapse and did not reach their target performance. Therefore, retrofit of those building models was carried out through a systematic procedure to determine areas to be strengthened. It was possible to make most building models satisfy performance objectives through the reinforcement alone of damaged external shear walls. However, the application of a preliminary evaluation procedure to retrofit design was found to be too conservative because all the retrofitted building models verified with nonlinear static analysis failed to satisfy performance objectives. Therefore, it is possible to economically retrofit unreinforced masonry buildings through the fortification of external walls if a simple evaluation procedure that can efficiently specify vulnerable parts is developed.