• Title/Summary/Keyword: Seismic Performance Evaluation

Search Result 913, Processing Time 0.026 seconds

A Study on the Current State of Seismic-Resistance and the Feature of Seismic Performance in School Buildings (학교건축물의 내진현황과 내진성능 특성에 관한 연구)

  • Jo, Min-Joo;Lee, Ju-Na
    • Journal of the Korean Institute of Educational Facilities
    • /
    • v.19 no.3
    • /
    • pp.33-40
    • /
    • 2012
  • At present, the problem to secure seismic resistance capacity is one of the most important issue in school buildings. However, the range of facilities to consider retrofit or the proper direction of seismic retrofit haven't provided in details. Therefore in this study, a series of school buildings were chosen as established time, and the structure composition and the seismic performance of the school buildings were investigated to get the comprehensive features of seismic resistance capacity in school buildings. At result, it was presented that the member capacities were less than criteria and structure system was showed the brittle behavior at the collapse prevention level at the school buildings before 1990 year. At the school buildings after 1990 year, though it is hard to get general features for various compositions, it was presented that they have problems for seismic performance evaluation in some buildings at life safety level, specially in the direction of X axis. So, considering the introduction process of seismic criteria in Korea, the school buildings before 2005 year should be examined for seismic resistance capacity and the seismic performance should be examined as well as member capacity to resist seismic.

A study on the Capacity Spectrum for Seismic Performance Evaluation of Bridge (교량의 내진성능 평가를 위한 역량스펙트럼 적용 연구)

  • Park, Yeon-Soo;Lee, Byung-Geun;Kim, Eung-Rok;Suh, Byung-Chul;Park, Sun-Joon;Choi, Sun-Min
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.1012-1017
    • /
    • 2008
  • In this study, We examine closely the capacity spectrum method which a kind of displacement-based method evaluated by displacement of structure as an alternative to the load-based analysis method. The displacement-based method can easily review the strength of structure, seismic performance, ductility. Seismic performance by using capacity spectrum method is divided into design response spectrum and capacity spectrum. We can diagram design response spectrum by deciding the design seismic factor depending on performance target, site classification, seismic level, return period as UBC-97. Capacity spectrum is a load-displacement curve obtained by Push-over analysis considering the geometric parameter and the material parameter. We execute the seismic performance evaluation by using the capacity spectrum method to reinforced concrete pier which has been seismic design. As a result, We confirmed that there is a yield point and a ultimate point close by design response spectrum of UBC-97.

  • PDF

Strength Index in Seismic Performance Evaluation Method of Existing Reinforced Concrete Buildings (기존 철근콘크리트 건물 내진진단법의 강도지표)

  • 이원호
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.10a
    • /
    • pp.278-287
    • /
    • 2000
  • In Korea, countermeasures against earthquake disasters such as the seismic performance evaluation and/or retrofit scheme of buildings have not been fully performed since Korea had not been experienced many destructive earthquakes in the past. However, due to more than four hundred earthquakes with slight/medium intensity occurred in the off-coastal and inland of Korea during the past 20 years, and due to the great earthquakes occurred recently in neighboring countries, such as the 1995 Hyogoken-Nambu Earthquake with more than 6,500 fatalities in Japan and the 1999 Ji-Ji Earthquake with more than 2,500 fatalities in Taiwan, the importance of the future earthquake preparedness measures in Korea is highly recognized. The main objective of this paper is to provide the basic data for development of a methodology for the future earthquake preparedness in Korea by investigating the concept and applicabilities of the Japanese Standard for Evaluation of Seismic Performance of Existing RC Buildings developed in Japan among the methodologies of all over the world. In this paper, a seismic performance evaluation method of the existing reinforced concrete buildings is proposed based on experimental data of columns and walls carried out in Korea by referring the Japanese Standard, especially focusing on the Strength Index(C) among the indices in the seismic capacity index(IS) equations. Also, the seismic capacities of two existing reinforced concrete buildings in Korea are evaluated based on the proposed methodology and the Japanese Standard, and the correlations between the seismic capacities by the proposed methodology and the Japanese Standard are discussed.

  • PDF

Seismic Performance Evaluation of the Low-Rise Buildings with Different Seismic Retrofit Procedures (구조물 내진보강법에 따른 저층 건축물의 내진성능평가)

  • Song, Min Ah;Lee, Sicheol;Lee, Kihak
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.20 no.7_spc
    • /
    • pp.553-560
    • /
    • 2016
  • After an earthquake occurred in the Gyeongju, 2016, many low-story buildings have been questioned in terms of the seismic performance since mostly they have been exempted from the seismic design requirement since 1988. In this study, a 3-story moment resisting frame (MRF) building was analyzed and evaluated the seismic performance. Due to the insufficient seismic performance required for the seismic performance levels, three different seismic retrofit schemes were proposed and their seismic performances were re-evaluated. While steel brace and open shear wall retrofit systems mainly focused on the strength retrofit, the VES damper retrofit system is mainly to enhance the energy dissipation capacity of the system and resultes in the increased ductility. The original building and 3 retrofitted buildings were evaluated using the nonlinear static and nonlinear dynamic analyses and suggestions were proposed. Through the analysis of nonlinear time history and push-over using MIDAS/Gen program, damages of the building in terms of top story and average story drift and effect of reinforcement were analyzed.

Numerical Study on Earthquake Performance of Gravity Dam Considering Earthquake Frequencies (지진진동수에 따른 콘크리트 중력댐의 내진성능에 대한 해석적 사례연구)

  • Chai, Young-Suk;Min, In-Ki
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.4
    • /
    • pp.64-74
    • /
    • 2016
  • Recently, the seismic stability evaluation of concrete gravity dams is raised due to the failure of dams occurred by the Izmit, Turkey and JiJi, Taiwan earthquake in 1999. Dams failure may incur loss of life and properties around the dam as well as damage to dam structure itself. Recently, there has been growing much concerns about "earthquake - resistance" or "seismic safety" of existing concrete gravity dams designed before current seismic design provisions were implemented. This research develops three evaluation levels for seismic stability of concrete gravity dams on the basis of the evaluation method of seismic stability of concrete gravity dams in U.S.A., Japan, Canada, and etc. Level 1 is a preliminary evaluation which is for purpose of screening. Level 2 is a pseudo-static evaluation on the basis of the seismic intensity method. And level 3 is a detail evaluation by the dynamic analysis. Evaluation results on existing concrete gravity dams on operation showed good seismic performance under designed artificial earthquake(KHC earthquake).

Evaluation on the Seismic Performance of Port Structures using GIS (GIS를 이용한 항만구조물의 내진성능 평가기법)

  • Kim, Na Young;Kang, In Joon;Choi, Hyun;Kim, Tae Hyo
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.22 no.4
    • /
    • pp.31-38
    • /
    • 2014
  • Seismic of the Korean Peninsula is terrible about 1,900 times. Lately, because of a world-occurring seismic, investment of seismic design about ground & structures come to the force as means to protect national life and property. This study evaluated having seismic performance above design criteria among the existing port structures not applied seismic design. Based on the results, classified apprehensive area of liquefaction from seismic performance evaluation and made hazards according to liquefaction risk & structural performance using the analysis of seismic performance and GIS method. After Establishing quantitative & detailed input database through liquefaction evaluation and seismic performance, analysed all seismic data are used directly valuation data on repair reinforcement for apprehensive area of earthquakes.

Assessment Factors for Seismic Performance of Multi-block Stone Pagodas (적층 석탑의 내진성능 평가요소)

  • Kim, Namhee;Koo, In Yeong;Hong, Sung-Gul
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.23 no.1
    • /
    • pp.19-29
    • /
    • 2019
  • Recent earthquakes in Korea caused some damages to stone pagodas and thereby awakened the importance of earthquake preparedness. Korean stone pagodas which have been built with very creative style of material use and construction method are worthy of world heritage. Each stone pagoda consists of three parts: top; body; and base. However each tower is uniquely defined by its own features, which makes it more difficult to generalize the seismic assessment method for stone pagodas. This study has focused on qualitative preliminary evaluation of stone pagodas that enables us to compare the relative seismic performance across major aspects among many various Korean pagodas. Specifically an analytical model for multi-block stone pagodas is to be proposed upon the investigation of structural characteristics of stone pagoda and their dynamic behavior. A strategy for seismic evaluation of heritage stone pagodas is to be established and major evaluation factors appropriate for the qualitative evaluation are identified. The evaluation factors for overall seismic resisting behavior of stone pagodas are selected based on the dynamic motions of a rigid block and its limit state. Numerical simulation analysis using discrete element method is performed to analyze the sensitivity of each factor to earthquake and discuss some effects on seismic performance.

Seismic Performance Evaluation of Nonseismic Neighborhood Living Facilities Considering Deterioration (비내진 근린생활시설의 노후도를 고려한 내진성능평가)

  • Lee, Young Cheon;Jeoung, Chae Myeoung;Lee, Eun Jin;Kim, Myung Hoon;Choi, Ki Bong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.1
    • /
    • pp.55-63
    • /
    • 2013
  • In this study, seismic performance was evaluated considering the deterioration level for the low-rise and moderate buildings with non-seismic details which are most common in Korea. Evaluation results showed that the deterioration condition is relatively good even after 24 years of construction but the seismic performance did not satisfy the protection index in the first and second evaluation. In case of the third evaluation, the goal performance was satisfied based on the interstory drift ratio but reinforcement is found to be necessary. Seismic performance was evaluated after the target buildings were reinforced in the walls, bracing, and damper. Results showed the interstory drift ratio drastically reduced regardless of reinforcement methods and satisfied the level of immediate occupancy. In case of wall reinforcement, however, base shear increased more than double which requires review on the existing foundation.

Anti-Seismic Evaluation of Waterproofing Materials for Positive-Side wall and pile wall of Underground Concrete Structures (합벽구간 및 지하구조물 외벽에 사용되는 방수재료 내진 성능실험방법)

  • Oh, Kyu-hwan;Kim, Soo-Yeon;Oh, Sang-Keun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.11a
    • /
    • pp.210-211
    • /
    • 2021
  • This study introduces and demonstrates the application of an experimental regime for anti-seismic performance evaluation of waterproofing materials to used for concrete pile walls. Concrete pile walls are subject to high degree of seismic load, and the occurring stress can affect the waterproofing integrity of the structure, but there is currently no existing methodology or standard for evaluating this property of waterproofing materials. To propose and conduct this evaluation, a new testing apparatus was designed and manufactured intended to be able to test an installed waterproofing material's seismic resistance performance.

  • PDF

Seismic Performance Evaluation Methodology for Nuclear Power Plants (원전 구조물의 내진성능 평가 방법론 고찰)

  • Ann, Hojune;Kim, Yousok;Kong, Jung Sik;Choi, Youngjin;Choi, Se Woon;Lee, Min Seok
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.14 no.2
    • /
    • pp.32-40
    • /
    • 2018
  • Since 2000, the frequency of earthquakes beyond the 5.0 magnitude quake has been increasing in the Korean peninsula. For instance, the 5.0-magnitude earthquake in Baekryong-do in 2003 has occurred, and recent earthquake with Gyeongju(2016) and Pohang(2017) measured respectively magnitude of 5.2 and 5.8 on the Richter scale. As results, the public concern and anxiety about earthquakes are increasing, and therefore it is necessarily required for social infrastructure to reinforce seismic design and energy production facilities directly related to the national economy and security. This study represents the analysis of seismic performance evaluation methodology such as Seismic Margin Assessment (SMA), Seismic Probabilistic Risk Assessment (SPRA), High Confidence Low Probability Failure (HCLPF) in nuclear power plants in order to develop optimal seismic performance improvement. Current methodologies to evaluate nuclear power plants are also addressed. Through review of the nuclear structure evaluation past and current trend, it contributes to be the basis for the improvement of evaluation techniques on the next generation of nuclear power plants.