• 제목/요약/키워드: Seismic Loads

검색결과 780건 처리시간 0.021초

A performance based strategy for design of steel moment frames under blast loading

  • Ashkezari, Ghasem Dehghani
    • Earthquakes and Structures
    • /
    • 제15권2호
    • /
    • pp.155-164
    • /
    • 2018
  • Design of structures subjected to blast loads are usually carried out through nonlinear inelastic dynamic analysis followed by imposing acceptance criteria specified in design codes. In addition to comprehensive aspects of inelastic dynamic analyses, particularly in analysis and design of structures subjected to transient loads, they inherently suffer from convergence and computational cost problems. In this research, a strategy is proposed for design of steel moment resisting frames under far range blast loads. This strategy is inspired from performance based seismic design concepts, which is here developed to blast design. For this purpose, an algorithm is presented to calculate the capacity modification factors of frame members in order to simplify design of these structures subjected to blast loading. The present method provides a simplified design procedure in which the linear dynamic analysis is preformed, instead of the time-consuming nonlinear dynamic analysis. Nonlinear and linear analyses are accomplished in order to establish this design procedure, and consequently the final design procedure is proposed as a strategy requiring only linear structural analysis, while acceptance criteria of nonlinear analysis is implicitly satisfied.

횡력을 받는 합성 쉘 구조의 해석 (ANALYSIS OF MULTPLE SHELL STRUCTURES SUBJECTED TO LATERAL LOADS)

  • 이평수
    • 전산구조공학
    • /
    • 제2권2호
    • /
    • pp.73-83
    • /
    • 1989
  • 2차원적인 유한요소들을 각 절점에서 6개의 자요도를 갖는 3차원인 입체로 결합함으로써, 횡하중을 받고 있는 합성 쉘 구조를 해석할 수 있는 프로그램 [MSSLL]을 개발하였다. 전체 구조물이 여러개의 반복되는 Substructure들로 이루어졌을 때에는, 인력의 소모를 극소화하고 계산시간을 절약할 수 있도록 해석과정에 Substructuring 기법을 본 프로그램에 도입하였다. 프로그램의 신뢰도를 확인하기 위하여 본 프로그램에 의한 해석결과와 다른 방법에 의한 결과를 비교분석 하였으며, 지진력을 받고 있는 8개의 개별 원추들로 구성된 쉘 구조의 거동에 대한 높이-경간비의 영향을 규명하기 위하여 변수연구를 수행하였다.

  • PDF

Static and dynamic analytical and experimental analysis of 3D reinforced concrete panels

  • Numayr, K.;Haddad, R.
    • Structural Engineering and Mechanics
    • /
    • 제32권3호
    • /
    • pp.399-406
    • /
    • 2009
  • A three-dimensional panel system, which was offered as a new method for construction in Jordan using relatively high strength modular panels for walls and ceilings, is investigated in this paper. The panel consists of two steel meshes on both sides of an expanded polystyrene core and connected together with a truss wire to provide a 3D system. The top face of the ceiling panel was pored with regular concrete mix, while the bottom face and both faces of the wall panels were cast by shotcreting (dry process). To investigate the structural performance of this system, an extensive experimental testing program for ceiling and wall panels subjected to static and dynamic loadings was conducted. The load-deflection curves were obtained for beam and shear wall elements and wall elements under transverse and axial loads, respectively. Static and dynamic analyses were conducted, and the performance of the proposed structural system was evaluated and compared with a typical three dimensional reinforced concrete frame system for buildings of the same floor areas and number of floors. Compressive strength capacity of a ceiling panel is determined for gravity loads, while flexural capacity is determined under the effect of wind and seismic loading. It was found that, the strength and serviceability requirements could be easily satisfied for buildings constructed using the three-dimensional panel system. The 3D panel system is superior to that of conventional frame system in its dynamic performance, due to its high stiffness to mass ratio.

Adaptive control of rotationally non-linear asymmetric structures under seismic loads

  • Amini, Fereidoun;Rezazadeh, Hassan;Afshar, Majid Amin
    • Structural Engineering and Mechanics
    • /
    • 제65권6호
    • /
    • pp.721-730
    • /
    • 2018
  • This paper aims to inspect the effectiveness of the Simple Adaptive Control Method (SACM) to control the response of asymmetric buildings with rotationally non-linear behavior under seismic loads. SACM is a direct control method and was previously used to improve the performance of linear and non-linear structures. In most of these studies, the modeled structures were two-dimensional shear buildings. In reality, the building plans might be asymmetric, which cause the buildings to experience torsional motions under earthquake excitation. In this study, SACM is used to improve the performance of asymmetric buildings, and unlike conventional linear models, the non-linear inertial coupling terms are considered in the equations of motion. SACM performance is compared with the Linear Quadratic Regulator (LQR) algorithm. Moreover, the LQR algorithm is modified, so that it is appropriate for rotationally non-linear buildings. Active tuned mass dampers are used to improve the performance of the modeled buildings. The results show that SACM is successful in reducing the response of asymmetric buildings with rotationally non-linear behavior under earthquake excitation. Furthermore, the results of the SACM were very close to those of the LQR algorithm.

Experimental studies on steel frame structures of traditional-style buildings

  • Xue, Jianyang;Qi, Liangjie
    • Steel and Composite Structures
    • /
    • 제22권2호
    • /
    • pp.235-255
    • /
    • 2016
  • This paper experimentally investigated the behavior of steel frame structures of traditional-style buildings subjected to combined constant axial load and reversed lateral cyclic loading conditions. The low cyclic reversed loading test was carried out on a 1/2 model of a traditional-style steel frame. The failure process and failure mode of the structure were observed. The mechanical behaviors of the steel frame, including hysteretic behaviors, order of plastic hinges, load-displacement curve, characteristic loads and corresponding displacements, ductility, energy dissipation capacity, and stiffness degradation were analyzed. Test results showed that the Dou-Gong component (a special construct in traditional-style buildings) in steel frame structures acted as the first seismic line under the action of horizontal loads, the plastic hinges at the beam end developed sufficiently and satisfied the Chinese Seismic Design Principle of "strong columns-weak beams, strong joints-weak members". The pinching phenomenon of hysteretic loops occurred and it changed into Z-shape, indicating shear-slip property. The stiffness degradation of the structure was significant at the early stage of the loading. When failure, the ultimate elastic-plastic interlayer displacement angle was 1/20, which indicated high collapse resistance capacity of the steel frame. Furthermore, the finite element analysis was conducted to simulate the behavior of traditional-style frame structure. Test results agreed well with the results of the finite element analysis.

Horizontal stiffness solutions for unbonded fiber reinforced elastomeric bearings

  • Toopchi-Nezhad, H.
    • Structural Engineering and Mechanics
    • /
    • 제49권3호
    • /
    • pp.395-410
    • /
    • 2014
  • Fiber Reinforced Elastomeric Bearings (FREBs) are a relatively new type of laminated bearings that can be used as seismic/vibration isolators or bridge bearings. In an unbonded (U)-FREB, the bearing is placed between the top and bottom supports with no bonding or fastening provided at its contact surfaces. Under shear loads the top and bottom faces of a U-FREB roll off the contact supports and the bearing exhibits rollover deformation. As a result of rollover deformation, the horizontal response characteristics of U-FREBs are significantly different than conventional elastomeric bearings that are employed in bonded application. Current literature lacks an efficient analytical horizontal stiffness solution for this type of bearings. This paper presents two simplified analytical models for horizontal stiffness evaluation of U-FREBs. Both models assume that the resistance to shear loads is only provided by an effective region of the bearing that sustains significant shear strains. The presented models are different in the way they relate this effective region to the horizontal bearing displacements. In comparison with experimental results and finite element analyses, the analytical models that are presented in this paper are found to be sufficiently accurate to be used in the preliminary design of U-FREBs.

A comparison of the effect of SSI on base isolation systems and fixed-base structures for soft soil

  • Karabork, T.;Deneme, I.O.;Bilgehan, R.P.
    • Geomechanics and Engineering
    • /
    • 제7권1호
    • /
    • pp.87-103
    • /
    • 2014
  • This study investigated the effect of soil-structure interaction (SSI) on the response of base-isolated buildings. Seismic isolation can significantly reduce the induced seismic loads on a relatively stiff building by introducing flexibility at its base and avoiding resonance with the predominant frequencies of common earthquakes. To provide a better understanding of the movement behavior of multi-story structures during earthquakes, this study analyzed the dynamic behavior of multi-story structures with high damping rubber bearing (HDRB) behavior base isolation systems that were built on soft soil. Various models were developed, both with and without consideration of SSI. Both the superstructure and soil were modeled linearly, but HDRB was modeled non-linearly. The behavior of the specified models under dynamic loads was analyzed using SAP2000 computer software. Erzincan, Marmara and Duzce Earthquakes were chosen as the ground motions. Following the analysis, the displacements, base shear forces, top story accelerations, base level accelerations, periods and maximum internal forces were compared in isolated and fixed-base structures with and without SSI. The results indicate that soil-structure interaction is an important factor (in terms of earthquakes) to consider in the selection of an appropriate isolator for base-isolated structures on soft soils.

Enhancing seismic performance of ductile moment frames with delayed wire-rope bracing using middle steel plate

  • Ghalandari, Akram;Ghasemi, Mohammad Reza;Dizangian, Babak
    • Steel and Composite Structures
    • /
    • 제28권2호
    • /
    • pp.139-147
    • /
    • 2018
  • Moment frames have considerable ductility against cyclic lateral loads and displacements; however, sometimes this feature causes the relative displacement to exceed the permissible limits. This issue can bring unfavorable hysteretic behavior on the frame due to the reduction in the stiffness and resistance against lateral loads. Most of common bracing systems usually control lateral displacements through increasing stiffness while result in decreasing the capacity for energy absorption. This has direct effect on hysteresis curves of moment frames. Therefore, a system that is capable of both having the capacity of energy absorption as well as controlling the displacements without a considerable increase in the stiffness is quite important. This paper investigates retrofitting of a single-storey steel moment frame using a delayed wire-rope bracing system equipped with the ductile middle steel plate. The steel plate is considered at the middle intersection of wire ropes, where it causes cables to be continuously in tension. This integrated system has the advantage of reducing considerable stiffness of the frame compared to cross bracing systems as a result of which it could also preserve the frame's energy absorption capacity. In this paper, FEM models of a delayed wire-rope bracing system equipped by steel plates with different geometries have been studied, validated, and compared with other researchers' laboratory test results.

Analysis of seismic behavior of composite frame structures

  • Zhao, Huiling
    • Steel and Composite Structures
    • /
    • 제20권3호
    • /
    • pp.719-729
    • /
    • 2016
  • There are great needs of simple but reliable mechanical nonlinear behavior analysis and performance evaluation method for frames constructed by steel and concrete composite beams or columns when the structures subjected extreme loads, such as earthquake loads. This paper describes an approach of simplified macro-modelling for composite frames consisting of steel-concrete composite beams and CFST columns, and presents the performance evaluation procedure based on the pushover nonlinear analysis results. A four-story two-bay composite frame underground is selected as a study case. The establishment of the macro-model of the composite frame is guided by the characterization of nonlinear behaviors of composite structural members. Pushover analysis is conducted to obtain the lateral force versus top displacement curve of the overall structure. The identification method of damage degree of composite frames has been proposed. The damage evolution and development of this composite frame in case study has been analyzed. The failure mode of this composite frame is estimated as that the bottom CFST columns damage substantially resulting in the failure of the bottom story. Finally, the seismic performance of the composite frame with high strength steel is analyzed and compared with the frame with ordinary strength steel, and the result shows that the employment of high strength steel in the steel tube of CFST columns and steel beam of composite beams benefits the lateral resistance and elasticity resuming performance of composite frames.

커플링 보의 접합방식에 따른 복합 벽체 시스템에 관한 연구 (A Study on Hybrid Wall System on Connection Type of Coupling Beam)

  • 윤현도;박완신;한병찬;윤여진
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제7권4호
    • /
    • pp.201-208
    • /
    • 2003
  • 철근콘크리트 코어 벽체와 외부 철골골조로 구성된 복합벽체시스템은 중앙 코아 전단벽 주변의 오픈공간을 갖는다. 이와 같은 복합 벽체시스템은 연결된 벽체가 대부분의 횡하중에 저항하고 벽체저면과 커플링 보에서 대부분의 에너지를 소산할 수 있는 설계기법을 개발하는 것이 필요하다. 본 연구논문은 커플링 보의 접합방식 및 층규모를 주변수로 수직하중 및 풍하중과 지진하중을 받는 복합 벽체시스템에 대하여 전단력, 전도모멘트, 최대 횡변위, 층간변위비 및 동적특성을 규명하였다.