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ANALYSIS OF MULTIPLE SHELL STRUCTURES
SUBJECTED TO LATERAL LOADS
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Abstract

A computer program, MSSLL, was developed for the analysis of the “Multiple Shell Subjected to
Lateral Loads™ by utilizing 2 —dimensional finite elements in a 3—dimensional global assemblage with
6 DOF at each nodal point. In this program, substructuring procedure with frontal solver was introduced
in the solution procedure to save both human and computer resources when the whole structure consists
of repeated identical substructures. Some of the results obtained by MSSLL were compared with the
existing solutions by other methods. The effect of rise to span —length ratio was investigated for the behavior
of the multiple conical shell with 8 substructures subjected to seismic loads by performing a parametric

study.
1. INTRODUCTION of several repeated shell sectors or different type
of shell sectors is widely used as roofs for industrial
The multiple shell structure which may consist buildings, gymnasiums, grandstands, exhibition
* P39, ARt wa, FEEAL [Jo w&ol g E&8 19893 9 W30Y7A Batso w
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Analysis of Multiple Shell Structures Subjected to Lateral Loads

halls, museums, ect., and as main structures in the
militéry industries such as airplanes, shipbuildings
or other weapon systems, since it is esthetic in
appearance, effective in structural behavior due
to its geometry, and it covers large areas without
intermediate supports.

The classical thin shell theory yields differential
equations of equilibrium or continuity whose
complexity depends greatly on the shell geom-
etry and whose solution is a function of the geom.
etric positionof the boundary and the type of for-
ces or displacement quantities which must be sat-
isfied there.Hence,it is almost impossible to analyze
the multiple shell structures by classical methods
in case of complicated geometry and boundary
conditions together with variable thickness or
material properties, discontinuities on the shell
surface, and general loading conditions. Thus a
finite element method is employed to analyze those
structures in this study.

Many investigators analyzed the multiple cylin-
drical and hyperbolic paraboloid shells by finite
element method [1, 2, 3 etc.].Few topics [4, 5, 6,
7] can be found for the analysis of the multiple
conical shells up to present. Furthermore, they were
carried out etther for the specific shells under sim-
ple loading condition or by applying the membrane
theory only.

The objective of this study is to develop a com-
puter program which can analyze the multiple shell
structures under general loading conditions, to pro-
vide the input guide which can simplify the large
input data of physical problems, and to perform
the parametric study of multiple conical shell sub-
jected to lateral loads since this shell type has not
been dealt with profoundly in the literature.

2. FINITE ELEMENT IDEALIZATION

2.1 General Procedure in Finite Element Method
The finite element method is a general technique

for constructing approximate solutions and its basic
concept is the idealization of the continuum as an
assemblage of discrete structural elements. The
continuum is first divided into a finite number of
elements which are interconnected at a discrete
number of nodal points situated on their bounda-
ries. Then the stiffness properties of each element
are evaluated and the global stiffness of the com-
plete structure is obtained by superposition of the
individual element stiffness corresponding to the
degree of freedom at nodal points. This gives a
system of linear equations relating the nodal point
loads and displacements whose solution yields the
unknown nodal point displacements. The stress
resultants of each element are obtained through
the stress recovery procedure.

2.2 Types of Finite Element

Flat plate elements were introduced for the id-
ealization of thin shells in the early 1960s, doubly
curved elements were introuduced a few years later
as an attempt to find more appropriate elements
for shell geometry, and three —dimensional isopa-
rametric solid elements followed. These different
types of elements have their own advantages and
disadvantages. The higher order elements may
lead to more accurate results but greater comple-
xity and more computer time in application, while
the simple flat plate elements with coarse mesh
may lead to undesired final results. The flat plate
elements were chosen in the present study. This
simplifies the evaluation of the element stiffness
properties, but results in some geometric discreti-
zation error since the behavior of the discretized

shell can only approach that of the actual shell with
decreasing mesh sizes.

There are three membrane elements and one
plate bending~element available in the program
used n this study. The three membrane elements
are constant strain triangular (CST) [8], constrained
linear strain triangular (CLST) (9], and refined
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quadrilateral membrane (QM5) [10] elements. The
stiffnesses of these elements are derived based on
the assumption of plane stress.

The CST —triangle is recommended only when
it is required for the geometric idealization of the
shell structure, since this element is inferior to other
membrane elements in the convergence of the
solution. In general, the QM5 quadriliateral ele-
ment is preferable to the CLST quadrilateral ex-
cept when the geometry of the element is skewed
[11]. The HCT [12] element used as the plate ben-
ding element has 3 DOF at each nodal point. This
element is fully compatible for plate bending prob-
lems since the normal slopes along the element
edges are constrained to be linear.

The complete flat triangular element for both
membrane and bending stiffnesses is achieved by
adding CST element to HCT element as shown
in Fig. 1(a) and so this element has 5 DOF with
a zero rotational stiffness about the axis normal
to the element at each nodal point. Two versions
of the quadrilateral element are available in the
program as indicated in Fig. 1(b) and (c). The
quadrilateral element in Fig. 1(b) is obtained by
combining the assemblage of 4 CLST elements
with that of 4 HCT elements for the nonplanar
elemtnt, while the element in Fig. 1(c) consists
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(b) CLST + HCT

Fig. 1 Combination of membrane element with bending ele-

ment

the assemblage of QM5 element with 4 HCT ele-
ments for planar element. Both of the above quad-
rilateral elements have also 5 DOF at four corners
and the interior DOF of the coentral and mid —side
nodes are eliminated by static condensation.

2.3 Out of Plane Rotational Stiffness

The elements previously described have only
5 DOF at each node on the element level and
these 5 DOF are also maintained in describing
the stiffness of the element assemblage in the
present program. In order to include, in a syste-
matic way, the 6 DOF for the stiffness of the ele-
ment assemblage, Zienkiewicz [13] and Johnson
(14] suggested the ficititious rotational coefficients
for the triangular element and the quadrilateral
element, respectively.

These rotational stiffness coefficients were con-
structed such that equilibrium is preserved at the
element level, and Zienkiewicz pointed out that
the fictitious stiffness will affect the response of
structure. In general, this fictitious stiffness will
stiffen the structure if all the elements are not
co—planar.

3. SUBSTRUCTURING TECHNIQUE

3.1 Substructuring Concept

The static analysis of a structure requires to solve
a set of linear equilibrium equations given by

Ki=R 1
where K is the stiffness matrix of the whole st-
ructure, r is the unknown displacement wvector,
and R is the corresponding load vector.

In the finite element procedure of the analysis
of multiple shell structures, great efforts are fre-
quently required for input preparati on as well as
computer time and memory storage. These may
be overcome by employing the substructuring tec-
hnique [15] in the solution procedure.

The basic concept of substructuring consists of
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dividing the whole structure into several substruc-
tures and of integrating them after proper modifi-
cation in each substructure. In this procedure, the
order of the finite element model is reduced by
a systematic reduction of the repeated substruc-
tures whose properties are identical in sequence.
Thus it saves the reduction and modeling efforts
and the reduced model can be efficiently solved
by the standard solution procedure.

The effort required to solve Eq.(1) depends on
the half bandwidth which is determined by the
node numbering scheme. The node numbering
scheme of minimizing the half bandwidth is very
time consuming in the modeling of the complex
and large structure. However, in the substructuring
procedure, the individual substructures can have
their own optimal numbering scheme to reduce
the half bandwidth, and also they require smaller
number of operation in the elimination of the in-
terior DOF. The interior DOF of each substructure
can be eliminated since the stiffness matrix and
the applied load vector are uncoupled with respect
to the unknown displacements. Consequently, the
solution of the original system can be obtained from
the solution of the reduced equations defined in
terms of the exterior DOF at the juncture of indi-

vidual substructures.

3.2 Frontal Method

In the substructuring procedure to reduce the
order of the finite element model by eliminating
the interior DOF, the frontal technique (16, 17] is
very effective since the front itself constitute a
substructure stiffness for the elements which have
been processed. The frontal process alternates
between accumulation and elimination of element
coefficients until the desired form of reduced equat-
ions is obtained from the original equations.

In this process, the front width is determined
by the connectivity of the current element to the
other elements assembled in the front. Thus the

element numbering should run in the direction with
the smallest number of elements in order to reduce
the front width. However, the node numbering
scheme is immaterial, which in contrast is very
important in the banded solution procedure. This
characteristic of the frontal procedure may help
the remodeling with little modifications when the
local refinement of meshes is necessary in the ori-
ginal coarse mesh layout.

Only the first substructure of Fig. 2(2) needs
to be generated in each group and the remaining
substructures in each group need not be generated
since they are repeated identical substructures.
However, if the load vectors in the individual
substructures are different, they should be generat-
ed corresponding to the process of the stiffness.
The final structure after the elimination of the
interior DOF is shown in Fig. 2(b). The solution
of equilibrium equations can be obtained by em-
ploying the standard solution techniques for this
reduced structure. However, the solution also can
be obtained by applying the same frontal procedure
for each substructure to this final structure as if
the substructures in this structure were large ele-
ments having a very large number of DOF.
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(a) Mesh layouls of first substructure in each group
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(b) Master nodes after elimination of interior DOF

Fig. 2 Multiple shell structure with 13 substructures
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4. DOCUMENTATION OF PROGRAM MSSLL

4.1 Program Information

A computer program MSSLL (Multiple Shell
Subjected to Lateral Loads) has been developed
for this research. This program utilizes 2 —dimen-
sional finite elements in a 3—dimensional global
assemblage with six DOF at each nodal point and
provides a general capability for the static analysis
of prismatic, cylindrical conical, hyperbolic para-
boloid, and other shells of arbitrary geometry with
arbitrary loads and boundary conditions.

The subject computer program has automatic
mesh generation options and recognizes repeated
substructures in both the stiffness and the stress
recovery in order to simplify and reduce the efforts
for the input data preparation and to save computer
time and memory requirements. This program
consists of three subprograms called SHELLG,
SHELLP, and SHELLR which have to be execut-
ed in sequence.

The subprogram SHELLG is mainly for the
generation of nodal point’s coordinates, meshes,
and loads and for the calculation of stiffnesses.
Each element stiffness is calculated and tapes are
created in this subprogram for the subsequent
execution of SHELLP and SHELLR. The second
subprogram SHELLP, a single level substructuring
package, is the principal program which has 50
subroutines. This program needs input data for
substructure information and boundary conditions
and tapes from SHELLG for execution, and cal-
culates the nodal point displacements and saves
them on tapes for SHELLR. The third subprogram
SHELLR is the stress recovery program which
also requires some input data and tatpes generated
by former two subprograms. It gives stresses, stress
resultants of each element, or stress resultants at
each nodal point by user’s options.

4.2 Coordinate Systems

Two types of base coordinate systems are used
in this analysis, They are the global coordinate
system (X, Y, Z) which is a fixed set of Cartesian
coordinates and the surface coordinate system
(.. &, &)which is necessary to specify all translations
and rotations in the desired directions.

There are two local coordinate systems ; element
coordinates (¥, ¥, Z) for triangular elements
and #— coordinates (%, 7, 7,) for quadrilateral ele-
ments. They are shown in Fig. 3 and constructed
automatically by the program. The stresses and
stress resultants of each element are oriented to
these local coordinate systems in the computer
output.

Fig. 3 Discretized shell with coordinate systems

The coordinate systems for different shell geo-
metries are appropriately established in order to
generate the input data of nodal point coordinates,
and the components of surface coordinates in the
direction of global coordinate are also prepared to
apply the continuity and boundary conditions.
However, for simplicity, only the coordinate system
of the conical shell is presented here as an illust-
ration.

The global coordinate system is shown in Fig.4
with the origin at the vertex of the conical shell.
The local coordinate system is oriented in such a
way that, with the same origin as the global coor-
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dinate system, the y—axis is the axis of the con-
eitself and the x —axis lies on the half section of
the full cone whose plane may be inclined against
the horizontal plane at an angle 8. The horizontal
projection of the y—axis (yy) may have an angle
«, from the global Y —axis.

.~ Diaphrgm

X

Fig. 4 Coordinate system for conical shell

Three independent surface coordinate systems
are selected for the conical shell as shown in Fig.
4 in order to specify the boundary conditions at
different locations. The & coordinates are const-
ructed on the usual surface, the & coordinates are
used at the juncture of the shell sectors, and the
£ coordinates are defined at the outer edge of
the shell sector where the diaphragm is provided.
The positive directions of these coordinates are
also given in the same figure. The global compo-
nents of the surface coordinates can be obtained
by considering the geometry of the conica 1 shell
(7.

4.3 Load Vector

The dead weight of each element is automati-
cally treated ty the consistent load procedure for
nodal point loads in the program. These nodal point
loads are first established in the element coordinat-
es and then they must be transformed into the

base coordinates for load assemblage.

When the shell is subjected to uniformly distri-
buted live loads in arbitrary directions, the global
coordinate components of the loads and the pro-
jected area of the element in the directions of the
global coordinates are first calculated, then the
nodal point loads are determined by considering
the tributary areas of this projected element with
the corresponding load components. In the trian-
gular elements, the nodal point load at each node
is a third of the total element loads. As an example,
the Z —directional load at a node of the triangle
shown in Fig. 5(a) is, for the uniformly distributed

live load intensity of pz on the horizontal projection;

Pz=pz [(*;—%) (—Y)—(*:—%)) —y)1/6
2

The nodal point load of the quadrilateral element,
for example, P; at node 7 can be obtained as follows:
The tributary area for node 7 is the shaded area
in Fig. 5(b) which is a part of the horizontally pro-
jected area and is determined by adding the half
area of the triangle 7 — j —c to that of the triangle
i—c—¥, thus

A, = [ [(x.—%) V,—¥) + =) (x;—%,) /4
3)

Y T s )]

!
|
I
X ! |
o (X5, V1)
(X1, y1)

(a) Triangular element

| |
! ////7};
X (o y];@(m. yi)
L (Xe. Ye)

(X, y5)

(b) Quadrilateral element

Fig. 5 Projected area on x—y plane

The tributary areas for the remaining nodes j,
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k, and ¢ are similary obtained, then the Z —direc-
tional loads at these four nodes are obtained by
multiplying the load intensity of p; to the corres-
ponding tributary areas such as

P, = pz [ [{(*%.—%) (0,—y) + (0.—3) (;—%))/4
;= Pz [ (X, ~%) (3;—¥) + (0.—¥) (*%:—%) /4

= Dz [ (=% ;= Y)+(.—) (X,—%) /4

Py = pz [ [(*.—%) i—3)+ .~y (¥,—%,) /4

0

@

Where ¥, and y, are the average coordinates of
four nodes.

The nodal point loads for other loading conditions
may be obtained by calculating their components
according to the DOF at each node. For example,
the components of loads applied to the conical shell
can be obtained by the formular given in Ref.
[18]. These load components together with those
obtained from uniform live loads are simply added
to the corresponding dead load components in the
global coordinate system.

5. DEMONSTRATION ANALYSES

5.1 Cylindrical Shell subjected to Wind Load

The geometry and material properties for a cy-
lindrical shell which consists of two barrels are
shown in Fig. 6. This shell is supported by diap-
hragms at both ends, connected monolithically along
the central edge, and free along the exterior edges.
This shell is loaded by its own dead weight and
wind pressure from left to right as shown in the
same figure.

Only a half of the structure which is divided
into two substructures needs to be considered in
the analysis because of its symmetry about min—
span Typical uniform. meshes (8x4) of quadrilate-
rals are shown on the second substruture of Fig6.

.

E=3%10° psi
{=3 inch
v=0
p=0.2083 1b/in,

09
..

.08 09
T 3
v 4
Wind load

Fig. 6 Geometry and material properties of cylindrical shell
with loading condition

The displacements and the stress resultants of
this shell are obtained from the present program
MSSLL and compared with those obtained by the
execution of program MULEL [19] which is con-
sidered as “exact™ solutions since it utilizes the
Donriel — Jenkin’s shell equations. The dominant

/k’—v\‘\\\ ///«'"
/ SLB 1 \( *‘;\
1

HO0H
]

i
E i
1000 1
]
2000
”‘L\‘ ‘ e

(a) Longitudianl forces at midspan

HHNO

MSSLL

—2000

(b) Transverse moments at midspan

Fig. 7 Stress resullants for two barrel cylindrical shell
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stress resultants of the multiple cylindrical shell
are longitudinal forces and transverse moments
at midspan and they are plotted in Fig. 7(a) and
(b), respectively, in which they show a good ag-
reement on most regions for the solutions obtained
from MSSLL and MULEL. Large deviations occur
at free edges for the longitudinal forces and at
crown and at joint for the transverse moments,
respectively. These deviations may be due to the
truncation error in the series solution of MULEL
or the discretized error in the finite element model,
and can be reduced by a local refinement of meshes
in those regions in the modeling.

5.2 Conical Shell Subjected To Seismic Load

A typical roof structure for gymnasiums is selec-
ted from reference [7] to compare the results for
the dead load case and to investigate the behavior
of multiple conical shells under the lateral loads.
This shell having a circular shape in plan consists
of eight identical substructures as shown in Fig.
8(a) and the geometry of a conical shell is shown
in Fig. 8(b). This structure is supported along the
circumference by diaphragms perpendicular to the
individual cone axes and by hinges at the joints

120=100"

44.19

(b) Geometry of one substructure

Fig. 8 Multiple conical shell having circular shape in plan

of the diaphragms. The material of this shell is
assumed as reinforced concrete (E.=4,287,000 psi,
v=0.167) and the thickness is 2 inches except for
the center portion. It is naturally or intentionally
thickened in the practical construction around the
top of the roof where several apexes of individual
conical shell meet and a special consideration is
needed in the finite element modeling. Each sub-
structure is divided into 52 quadrilateral and 12
triangular elements in the modeling.

This multiple conical shell is subjected to its own
dead weight and uniform seismic—type loading
of Ps=0.25 pai on vertical projection of the shell
surface perpendicular to load direction, where the
vertical seismic acceleration is neglected and the
horizontal seismic acceleration is assumed as a=
0.4 where g is the gravitational acceleration.

Since the structure is symmetrical with respect
to the center line of the load direction, only a half
structure which has four substructures needs to
be analyzed. The boundary conditions for this case
are such *hat d5=g5=¢z= 0 at nodes on sym-
metric axis of whole structure, d5=d¢g=g8=0 at
nodes on diaphragms, d5=d5=dz=0 at the joint
nodes of the diaphragms, where ¢ and g represent
the translations and rotations respectively and the
subscripts are surface coordinates defined as in
Fig. 4.

The displacements and the stress resultants
obtained from the present program are exactly the
same as those of Ref. [7] for the dead load case.
In case of seismic load, the dominant stresses are
also the longitudinal normal stresses and other st-
resses are negligible compare to these stresses. Thus
these stresses are plotted in Fig. 9 and large stresses
are visualized around the apex of the shell. These
large stresses are due to the finite element modeling
with very large stiffness near the apex. However,
they are still far below than the allowable comp-
ressive strength of reinforced concrete structure
in the practical design. The stress resultants of
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the present shell subjected to both the dead and
seismic loads do not much differ from those for
the case of dead load only on most region.Mesh re-
finements may be needed for more rigorous analys-
es around the épex of the structure.

O

0 V | ' /7
o ]

(a) Along bottom juncture line @ — @

|
— 1000 ‘]IV
2] A"A n — - — Dead load only

(b) Along top crown line @ —®@

Dead + Seismic load

Fig. 9 Longitudinal normal stresses (psi)

To investigate the behavior of the multiple co-
nical shell subjected to lateral loads, shell thickness,
ratio of rise to span—length, central angle of in-
dividual cone, number of substructures, edge beam
at juncture, etc., may be chosen as parameters to
study their effects on the shell having the constant
_projected area in plan. Among them, the effect
of rise to span —length ratio (H/Ro) is to discuss
in detail for the shell shown in Fig. 8§ as an illust-
ration of the parametric study. The loading con-
‘dition is the same dead and seismic loads discussed
in the above. Keeping the radius of circle on hori-
zontal plane constant, four different heights of the
shell (H=15, 20, 25, 30 ft) are chosen as parameters
to compare their results.

The displacements normal to the shell surface
are shown in Fig. 10(a). They are plotted along
the juncture which is the symmetrical line of the

structure about the present loading condition. The
increase of height results in a stiffer structure but
it alsoincreases the span length and the total am-
ounts of materials. The location of maximum def-
lection in each case tends to shift toward the apex
of the shell with decreasing the height and so the
stiffner may be needed around the apex when the
shell becomes flatter.

w. inch

1,0()' 50 1007

(a) Normal displacement along juncture of symmetrical line

. —-——H =15
s H =20
4500 -l = 95"
T H =307

+— 1000

L—1500
(b) Normal stress along bottom juncture of symmetrical line

Fig. 10 Effect of height of multiple conical shell under seismic
load

The dominant stresses on this multiple conical
shell are the longitudinal normal stresses, and they
are plotted in Fig. 10(b) along the same symmet-
rical line as for the above displacements. These
stresses are almost proportional to the ratio of rise
to span—length and tend to tensile side with the
increase of height. However, the maximum stresses
are always observed near the apex and nearly
constant regardless of the rise to span—length
ratios. Tensile stresses are not desirable in the
design of a concrete shell structure and care should
be taken in the practical construction of such shell
when the heigth is relatively large compare to the
span length since it may produce unnecessary large
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tensile stresses. In the present case, the ratio of
0.2 of the rise to span—length gives the best resul-
ts. The effects of the other shell parameters to
the multiple conical shell subjected to the seismic
load are similar trends as those results discussed
in Ref. {7], in which the shell was subjected to dead
load only. Thus, it can be concluded that the major
effect to determine the behavior of the multiple
conical shell is the geometry of the shell itself.

6. SUMMARY AND CONCLUSIONS

The program MSSLL provides a versatile and
economical method for predicting structural res-
ponse of complex multiple shells subjected to the
gravitational and lateral loadings. Uncoupled in-
—plane and plate bending stiffnesses were incor-
porated in each stiffness providing the element
with 5 DOF at each nodal point and a fictitious
rotational stiffness was introduced to treat syste-
matically the element stiffness with 6 DOF. The
novel feature of this program is that of substruc-
turing. Using this approach, substructures with
identical properties that appear in sequence can
be treated very effectively since only the first
substructure in the sequence has to be dealt with.
The subject computer program recognizes repeated
substructures in both stiffness calculations and
stress recovery as well as input preparations.

The solutions obtained by MSSLL were generally
In good agreement with the known solutions tor
the multiple shells treated here. However, some
differences were observed at certain regions for
specific structures, e.g., vertical displacements at
free edges and transverse moments at the crown
of midspan for the case of multiple cylindrical shell,
and careful modeling should be taken into account
for those regions in the finite element procedure.

A conical shell with eight substructures which
was subjected to its own dead weight and uniform
seismic loading was treated here in detail with some
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parametric studies by changing the shell geomet-
ries, from which it may be concluded that the
behavior of the present shell is, in overall viewpoint,
similar to that of the shell under dead load case.
Although the loading condition is a very important
factor to determine the behavior of structure, the
geometry governs the behavior of the multiple
conical shell. The parametric study was shown as
a good tool to suggest economical and safe struc-
ture and to give some references for practical de-
sign of the multiple conical shell.
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