• Title/Summary/Keyword: Seismic Ground Response Analysis

Search Result 563, Processing Time 0.024 seconds

Seismic Analysis of Tunnel Response by Response Displacement Method (응답변위법에 의한 터널의 내진해석)

  • Yun, Se-Ung;Shin, Jong-Ho;Park, Du-Hee
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.457-462
    • /
    • 2009
  • In this study, seismic analysis is performed using simplified method, analytical solution and numerical analysis based on one-dimensional seismic site response analysis. The results show that analytical solution of tunnel response is predicted more conservative than numerical solution. And simplified method is not appropriate for seismic analysis of tunnel response. In addition, it is reasonable to determine shear-modulus reduction ratio performing seismic site response analysis to consider ground nonlinear-behavior.

  • PDF

Evaluation of Response Spectrum Shape Effect on Seismic Fragility of NPP Component (스펙트럼 형상이 원전 기기 지진취약도에 미치는 영향 평가)

  • 최인길;서정문;전영선;이종림
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.4
    • /
    • pp.23-30
    • /
    • 2003
  • The result of recent seismic hazard analysis indicates that the ground motion response spectra for Korean nuclear power plant site have relatively large frequency acceleration contents. In the ordinary seismic fragility analysis of nuclear power plant structures and equipments, the safety margin of design ground response spectrum is directly used as a response spectrum shape factor. The effects of input response spectrum shape on the floor response spectrum were investigated by performing the direct generation of floor response spectrum from the ground response spectrum. The safety margin included in the design ground response spectrum should be considered as a floor response spectrum shape factor for the seismic fragility analysis of the equipments located in a building.

Development of Probabilistic Site Coefficient (확률론적 지진계수 개발)

  • Kwak, Dong-Yeop;Jeong, Chang-Gyun;Park, Du-Hee
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.707-714
    • /
    • 2009
  • The design response spectrum generally used in Korea is decided by the site coefficients determined by deterministic methodology, while it is based on probabilistic seismic hazard analysis. The design response spectrum has to be made using probabilistic method which includes uncertainties of ground motions and ground properties for coincide with probabilistic methodology of seismic hazard analysis. In this study probabilistic site coefficients were developed, which were defined by the results of site response analysis using a set of ground motion that was compatible with present seismic hazard map. The design response spectrum defined by probabilistic seismic coefficients resulted in lower spectrum in long period area and larger spectrum in short period area. Also, the maximum spectral accelerations in site class D and site class E were lower than one in site class C while in the previous design response spectrum the maximum spectral acceleration increased from site class A to E.

  • PDF

Seismic Response of R/C Structures Subjected to Artificial Ground Motions Compatible with Design Spectrum (설계용 스펙트럼에 적합한 인공지진동을 입력한 철근콘크리트 구조물의 지진응답 특성의 고찰)

  • Jun, Dae-Han;Kang, Ho-Geun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.12 no.1
    • /
    • pp.1-9
    • /
    • 2008
  • In seismic response analysis of building structures, the input ground accelerations have considerable effect on the nonlinear response characteristics of structures. The characteristics of soil and the locality of the site where those ground motions were recorded affect on the contents of earthquake waves. Therefore, it is difficult to select appropriate input ground motions for seismic response analysis. This study describes a generation of artificial earthquake wave compatible with seismic design spectrum, and also evaluates the seismic response values of multistory reinforced concrete structures by the simulated earthquake motions. The artificial earthquake wave are generated according to the previously recorded earthquake waves in past major earthquake events. The artificial wave have identical phase angles to the recorded earthquake wave, and their overall response spectra are compatible with seismic design spectrum with 5% critical viscous damping. The input ground motions applied to this study have identical elastic acceleration response spectra, but have different phase angles. The purpose of this study is to investigate their validity as input ground motion for nonlinear seismic response analysis. As expected, the response quantifies by simulated earthquake waves present better stable than those by real recording of ground motion. It was concluded that the artificial earthquake waves generated in this paper are applicable as input ground motions for a seismic response analysis of building structures. It was also found that strength of input ground motions for seismic analysis are suitable to be normalize as elastic acceleration spectra.

Nonlinear Seismic Estimates of Recorded and Simulated Ground Motions Normalized by the Seismic Design Spectrum (설계용 탄성응답스펙트럼으로 규준화된 인공지진동과 기록지진동의 비선형 지진응답)

  • Jun, Dae-Han;Kang, Pyeong-Doo;Kim, Jae-Ung
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.15 no.5
    • /
    • pp.25-33
    • /
    • 2011
  • In the nonlinear response history analysis of building structures, the input ground accelerations have considerable effect on the nonlinear response characteristics of structural systems. As the properties of the ground motion, using time history analysis, are interrelated with many factors such as the fault mechanism, the seismic wave propagation from source to site, and the amplification characteristics of the soil, it is difficult to properly select the input ground motions for seismic response analysis. In this paper, the most unfavourable real seismic design ground motions were selected as input motions. The artificial earthquake waves were generated according to these earthquake events. The artificial waves have identical phase angles to the recorded earthquake waves, and their overall response spectra are compatible with the seismic design spectrum with 5% of critical viscous damping. It is concluded that the artificial earthquake waves simulated in this paper are applicable as input ground motions for a seismic response analysis of building structures.

The Earthquake Response Characteristics and Seismic Safety Evaluation of Steel Cable Stayed Bridges (강사장교의 지진응답특성 및 내진 안전성 평가)

  • Han, Sung Ho;Shin, Jae Chul;Choi, Jin Woo
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.5
    • /
    • pp.435-454
    • /
    • 2007
  • In this study, we demonstrated the characteristics of the near-fault ground motion thatwas not considered in the domestic seismic design code and how the effect of the near-fault ground motion affects the response of cable-stayed bridges. Afterselecting the actual measurement records of the typical near- and far-fault ground motion, the characteristics of ground motion is analyzed using the elastic and inelastic response spectrum. Analyzing the response regarding the earthquake's characteristics on cable-stayed bridges by the typical three-type cable-stayed bridges and the actual cable-stayed bridge, the characteristics of responses about main members are compared and analyzed. Moreover,reliability analysis is accomplished using the results of the seismic response analysis, and the seismic safety of the cable-stayed bridges is evaluated quantitatively as a reliability index and probability of failure. According to the results of the response spectrum, the earthquake response analysis and the reliability analysis, because the effect of the near fault ground motion against the response of cable-stayed bridges is different from the effect of the existing far-fault ground motion, it should be considered as an important factor when designing cable-stayed bridges.

Seismic response analysis of layered soils considering effect of surcharge mass using HFTD approach. Part II: Nonlinear HFTD and numerical examples

  • Saffarian, Mohammad A.;Bagheripour, Mohammad H.
    • Geomechanics and Engineering
    • /
    • v.6 no.6
    • /
    • pp.531-544
    • /
    • 2014
  • Studies of earthquakes over the last 50 years and the examination of dynamic soil behavior reveal that soil behavior is highly nonlinear and hysteretic even at small strains. Nonlinear behavior of soils during a seismic event has a predominant role in current site response analysis approaches. Common approaches to ground response analysis include linear, equivalent linear and nonlinear methods. These methods of ground response analysis may also be categorized into time domain and frequency domain concepts. Simplicity in developing analytical relations and accuracy in considering soils' dynamic properties dependency to loading frequency are benefits of frequency domain analysis. On the other hand, nonlinear methods are complicated and time consuming mainly because of their step by step integrations in time intervals. In part Ι of this paper, governing equations for seismic response analysis of surcharged and layered soils were developed using fundamental of wave propagation theory based on transfer function and boundary conditions. In this part, nonlinear seismic ground response is analyzed using extended HFTD method. The extended HFTD method benefits Newton-Raphson procedure which applies regular iterations and follows soils' fundamental stress-strain curve until convergence is achieved. The nonlinear HFTD approach developed here are applied to some examples presented in this part of the paper. Case studies are carried in which effects of some influencing parameters on the response are investigated. Results show that the current approach is sufficiently accurate, efficient, and fast converging. Discussions on the results obtained are presented throughout this part of the paper.

Seismic Response Analysis of Bridges Considering Spatial Variation of Input Ground Motion (입력지반운동의 공간적 변화를 고려한 교량의 지진응답해석)

  • Choi, Kwang-Gyu;Kang, Seung-Woo;Kook, Seung-Kyu
    • Journal of Ocean Engineering and Technology
    • /
    • v.24 no.1
    • /
    • pp.76-82
    • /
    • 2010
  • This paper presents a seismic response analysis of bridge structures considering the spatial variation of input ground motion. In earthquake analyses of structures, it is usually assumed that the input ground motion is the same at every support. However, this assumption is not justified for long structures like bridges, because observations have shown that the earthquake ground motion can vary considerably within relatively small distances. When the soil under the foundation is relatively soft and deep, an analysis of the foundation-soil interaction must always be performed. To consider the foundation-soil interaction, a soil response analysis is performed first, and after determining the material characteristics of the foundation element obtained by this foundation-soil interaction analysis, the seismic response analysis of a bridge superstructure with equivalent springs and dampers is performed. Finally, the influences of the spatial variation in the input motion, which are affected by different soil characteristics, are considered.

Dynamic Response Analysis of 200m Honeycomb Lattice Domes by Rise Span Ratio (라이즈 스팬 비에 의한 200m 허니컴 래티스 돔의 동적 응답 분석)

  • Park, Kang-Geun;Chung, Mi-Ja
    • Journal of Korean Association for Spatial Structures
    • /
    • v.19 no.2
    • /
    • pp.51-61
    • /
    • 2019
  • The objective of this study is to analysis the seismic response of 200m spanned honeycomb lattice domes under horizontal and up-down ground motion of El Centro earthquake. For the analysis of seismic response of the honeycomb lattice domes by rise/span ratio, the time history analysis is used for the estimation of the dynamic response. The low rise lattice dome is less deformed and less stressed than the high rise lattice dome for the earthquake ground motion. The 3-dimensional earthquake response is not significantly different the dynamic response of one directional ground motion. The earthquake response of domes with LRB isolation system is significantly reduced for the asymmetric vertical deformation and the horizontal and vertical accelerations.

Generation of critical and compatible seismic ground acceleration time histories for high-tech facilities

  • Hong, X.J.;Xu, Y.L.
    • Structural Engineering and Mechanics
    • /
    • v.26 no.6
    • /
    • pp.687-707
    • /
    • 2007
  • High-tech facilities engaged in the production of semiconductors and optical microscopes are extremely expensive, which may require time-domain analysis for seismic resistant design in consideration of the most critical directions of seismic ground motions. This paper presents a framework for generating three-dimensional critical seismic ground acceleration time histories compatible with the response spectra specified in seismic design codes. The most critical directions of seismic ground motions associated with the maximum response of a high-tech facility are first identified. A new numerical method is then proposed to derive the power spectrum density functions of ground accelerations which are compatible with the response spectra specified in seismic design codes in critical directions. The ground acceleration time histories for the high-tech facility along the structural axes are generated by applying the spectral representation method to the power spectrum density function matrix and then multiplied by envelope functions to consider nonstationarity of ground motions. The proposed framework is finally applied to a typical three-story high-tech facility, and the numerical results demonstrate the feasibility of the proposed approach.