• 제목/요약/키워드: Seismic Capacity Performance

검색결과 899건 처리시간 0.023초

Seismic interactions between suspended ceilings and nonstructural partition walls

  • Huang, Wen-Chun;McClure, Ghyslaine;Hussainzada, Nahidah
    • Coupled systems mechanics
    • /
    • 제2권4호
    • /
    • pp.329-348
    • /
    • 2013
  • This study aims at observing the coupling behaviours between suspended ceilings and partition walls in terms of their global seismic performance using full-scale shake table tests. The suspended ceilings with planar dimensions of $6.0m{\times}3.6m$ were tested with two types of panels: acoustic lay-in and metal clip-on panels. They were further categorized as seismic-braced, seismic-unbraced, and non-seismic installations. Also, two configurations of 2.7 m high partition wall specimens, with C-shape and I-shape in the plane layouts, were tested. In total, seven ceiling-partition-coupling (CPC) specimens were tested utilizing a unidirectional seismic simulator. The test results indicate that the damage patterns of the tested CPC systems included failure of the ceiling grids, shearing-off of the wall top railing, and, most destructively, numerous partial detachments and falling of the ceiling panels. The loss of panels was mostly concentrated near the center of the tested partition wall. The testing results also confirmed that the failure mode of the non-seismic CPC systems was brittle: The whole system would collapse suddenly all at once when the magnitude of the inputs hit the capacity threshold, rather than displaying progressive damage. Overall, the seismic capacity of the unbraced and braced CPC systems could be up to 1.23 g and 2.67 g, respectively; these accelerations were both achieved at the base of the partition wall. Nonetheless, for practical applications, it is noteworthy that the three-dimensional nature of seismic excitations and the size effect of the ceiling area are parameters that exacerbate the CPC's seismic response so that their actual capacity may be dramatically decreased, leading to important losses even in moderate seismic events.

Investigation of shear effects on the capacity and demand estimation of RC buildings

  • Palanci, Mehmet;Kalkan, Ali;Sene, Sevket Murat
    • Structural Engineering and Mechanics
    • /
    • 제60권6호
    • /
    • pp.1021-1038
    • /
    • 2016
  • Considerable part of reinforced concrete building has suffered from destructive earthquakes in Turkey. This situation makes necessary to determine nonlinear behavior and seismic performance of existing RC buildings. Inelastic response of buildings to static and dynamic actions should be determined by considering both flexural plastic hinges and brittle shear hinges. However, shear capacities of members are generally neglected due to time saving issues and convergence problems and only flexural response of buildings are considered in performance assessment studies. On the other hand, recent earthquakes showed that the performance of older buildings is mostly controlled by shear capacities of members rather than flexure. Demand estimation is as important as capacity estimation for the reliable performance prediction in existing RC buildings. Demand estimation methods based on strength reduction factor (R), ductility (${\mu}$), and period (T) parameters ($R-{\mu}-T$) and damping dependent demand formulations are widely discussed and studied by various researchers. Adopted form of $R-{\mu}-T$ based demand estimation method presented in Eurocode 8 and Turkish Earthquake Code-2007 and damping based Capacity Spectrum Method presented in ATC-40 document are the typical examples of these two different approaches. In this study, eight different existing RC buildings, constructed before and after Turkish Earthquake Code-1998, are selected. Capacity curves of selected buildings are obtained with and without considering the brittle shear capacities of members. Seismic drift demands occurred in buildings are determined by using both $R-{\mu}-T$ and damping based estimation methods. Results have shown that not only capacity estimation methods but also demand estimation approaches affect the performance of buildings notably. It is concluded that including or excluding the shear capacity of members in nonlinear modeling of existing buildings significantly affects the strength and deformation capacities and hence the performance of buildings.

Evaluation of seismic collapse capacity of regular RC frames using nonlinear static procedure

  • Jalilkhani, Maysam;Manafpour, Ali Reza
    • Structural Engineering and Mechanics
    • /
    • 제68권6호
    • /
    • pp.647-660
    • /
    • 2018
  • The Incremental Dynamic Analysis (IDA) procedure is currently known as a robust tool for estimation of seismic collapse capacity. However, the procedure is time-consuming and requires significant computational efforts. Recently some simplified methods have been developed for rapid estimation of seismic collapse capacity using pushover analysis. However, a comparative review and assessment of these methods is necessary to point out their relative advantages and shortcomings, and to pave the way for their practical use. In this paper, four simplified pushover analysis-based methods are selected and applied on four regular RC intermediate moment-resisting frames with 3, 6, 9 and 12 stories. The accuracy and performance of the different simplified methods in estimating the median seismic collapse capacity are evaluated through comparisons with the results obtained from IDAs. The results show that reliable estimations of the summarized 50% fractile IDA curve are produced using SPO2IDA and MPA-based IDA methods; however, the accuracy of the results for 16% and 84% fractiles is relatively low. The method proposed by Shafei et al. appears to be the most simple and straightforward method which gives rise to good estimates of the median sidesway collapse capacity with minimum computational efforts.

역량스펙트럼 방법을 이용한 철근 콘크리트 교각의 내진성능 평가 (Evaluation of Seismic Performance for Reinforced Concrete Piers Using Capacity Spectrum Method)

  • 송종걸;장동휘;정영화
    • 산업기술연구
    • /
    • 제24권A호
    • /
    • pp.185-194
    • /
    • 2004
  • To evaluate seismic performance of reinforced concrete piers two procedures for capacity spectrum method are presented. The capacity spectrum procedures include the reduction factor-ductility-period($R_{\mu}-{\mu}-T$)relationship in order to construct the inelastic demand spectra from the elastic demand spectra. Application of the procedures are illustrated by example analysis. Maximum displacements estimated by the procedures are compared to those by inelastic time history analysis for several artificial earthquakes. The results show that the maximum displacements estimated by the procedures are, on overall, smaller than those by the inelastic time history analysis.

  • PDF

구조물 내진보강법에 따른 저층 건축물의 내진성능평가 (Seismic Performance Evaluation of the Low-Rise Buildings with Different Seismic Retrofit Procedures)

  • 송민아;이시철;이기학
    • 한국지진공학회논문집
    • /
    • 제20권7_spc호
    • /
    • pp.553-560
    • /
    • 2016
  • After an earthquake occurred in the Gyeongju, 2016, many low-story buildings have been questioned in terms of the seismic performance since mostly they have been exempted from the seismic design requirement since 1988. In this study, a 3-story moment resisting frame (MRF) building was analyzed and evaluated the seismic performance. Due to the insufficient seismic performance required for the seismic performance levels, three different seismic retrofit schemes were proposed and their seismic performances were re-evaluated. While steel brace and open shear wall retrofit systems mainly focused on the strength retrofit, the VES damper retrofit system is mainly to enhance the energy dissipation capacity of the system and resultes in the increased ductility. The original building and 3 retrofitted buildings were evaluated using the nonlinear static and nonlinear dynamic analyses and suggestions were proposed. Through the analysis of nonlinear time history and push-over using MIDAS/Gen program, damages of the building in terms of top story and average story drift and effect of reinforcement were analyzed.

Seismic performance evaluation for steel MRF: non linear dynamic and static analyses

  • Calderoni, B.;Rinaldi, Z.
    • Steel and Composite Structures
    • /
    • 제2권2호
    • /
    • pp.113-128
    • /
    • 2002
  • The performance of steel MRF with rigid connections, proportioned by adopting different capacity design criteria, is evaluated in order to highlight the effectiveness of static non-linear procedure in predicting the structural seismic behavior. In the framework of the performance-based design, some considerations are made on the basis of the results obtained by both dynamic time histories and push-over analyses, particularly with reference to the damage level and the structure ability to withstand a strong earthquake.

Probabilistic seismic evaluation of buckling restrained braced frames using DCFD and PSDA methods

  • Asgarian, Behrouz;Golsefidi, Edris Salehi;Shokrgozar, Hamed Rahman
    • Earthquakes and Structures
    • /
    • 제10권1호
    • /
    • pp.105-123
    • /
    • 2016
  • In this paper, using the probabilistic methods, the seismic demand of buckling restrained braced frames subjected to earthquake was evaluated. In this regards, 4, 6, 8, 10, 12 and 14-storybuildings with different buckling restrained brace configuration (including diagonal, split X, chevron V and Inverted V bracings) were designed. Because of the inherent uncertainties in the earthquake records, incremental dynamical analysis was used to evaluate seismic performance of the structures. Using the results of incremental dynamical analysis, the "capacity of a structure in terms of first mode spectral acceleration", "fragility curve" and "mean annual frequency of exceeding a limit state" was determined. "Mean annual frequency of exceeding a limit state" has been estimated for immediate occupancy (IO) and collapse prevention (CP) limit states using both Probabilistic Seismic Demand Analysis (PSDA) and solution "based on displacement" in the Demand and Capacity Factor Design (DCFD) form. Based on analysis results, the inverted chevron (${\Lambda}$) buckling restrained braced frame has the largest capacity among the considered buckling restrained braces. Moreover, it has the best performance among the considered buckling restrained braces. Also, from fragility curves, it was observed that the fragility probability has increased with the height.

Seismic performance analysis of steel-brace RC frame using topology optimization

  • Qiao, Shengfang;Liang, Huqing;Tang, Mengxiong;Wang, Wanying;Hu, Hesong
    • Structural Engineering and Mechanics
    • /
    • 제71권4호
    • /
    • pp.417-432
    • /
    • 2019
  • Seismic performance analysis of steel-brace reinforced concrete (RC) frame using topology optimization in highly seismic region was discussed in this research. Topology optimization based on truss-like material model was used, which was to minimum volume in full-stress method. Optimized bracing systems of low-rise, mid-rise and high-rise RC frames were established, and optimized bracing systems of substructure were also gained under different constraint conditions. Thereafter, different structure models based on optimized bracing systems were proposed and applied. Last, structural strength, structural stiffness, structural ductility, collapse resistant capacity, collapse probability and demolition probability were studied. Moreover, the brace buckling was discussed. The results show that bracing system of RC frame could be derived using topology optimization, and bracing system based on truss-like model could help to resolve numerical instabilities. Bracing system of topology optimization was more effective to enhance structural stiffness and strength, especially in mid-rise and high-rise frames. Moreover, bracing system of topology optimization contributes to increase collapse resistant capacity, as well as reduces collapse probability and accumulated demolition probability. However, brace buckling might weaken beneficial effects.

Performance based design optimum of CBFs using bee colony algorithm

  • Mansouri, Iman;Soori, Sanaz;Amraie, Hamed;Hu, Jong Wan;Shahbazi, Shahrokh
    • Steel and Composite Structures
    • /
    • 제27권5호
    • /
    • pp.613-622
    • /
    • 2018
  • The requirement to safe and economical buildings caused to the exploitation of nonlinear capacity structures and optimization of them. This requirement leads to forming seismic design method based on performance. In this study, concentrically braced frames (CBFs) have been optimized at the immediate occupancy (IO) and collapse prevention (CP) levels. Minimizing structural weight is taken as objective function subjected to performance constraints on inter-story drift ratios at various performance levels. In order to evaluate the seismic capacity of the CBFs, pushover analysis is conducted, and the process of optimization has been done by using Bee Algorithm. Results indicate that performance based design caused to have minimum structural weight and due to increase capacity of CBFs.

Evaluation of the seismic performance of special moment frames using incremental nonlinear dynamic analysis

  • Khorami, Majid;Khorami, Masoud;Motahar, Hedayatollah;Alvansazyazdi, Mohammadfarid;Shariati, Mahdi;Jalali, Abdolrahim;Tahir, M.M.
    • Structural Engineering and Mechanics
    • /
    • 제63권2호
    • /
    • pp.259-268
    • /
    • 2017
  • In this paper, the incremental nonlinear dynamic analysis is used to evaluate the seismic performance of steel moment frame structures. To this purpose, three special moment frame structure with 5, 10 and 15 stories are designed according to the Iran's national building code for steel structures and the provisions for design of earthquake resistant buildings (2800 code). Incremental Nonlinear Analysis (IDA) is performed for 15 different ground motions, and responses of the structures are evaluated. For the immediate occupancy and the collapse prevention performance levels, the probability that seismic demand exceeds the seismic capacity of the structures is computed based on FEMA350. Also, fragility curves are plotted for three high-code damage levels using HASUS provisions. Based on the obtained results, it is evident that increase in the height of the frame structures reduces the reliability level. In addition, it is concluded that for the design earthquake the probability of exceeding average collapse prevention level is considerably larger than high and full collapse prevention levels.9.