• Title/Summary/Keyword: Seedling rot

Search Result 105, Processing Time 0.025 seconds

Studies on Phytouthora disease of Panax ginseng C. A Meyer; its causal agent and possible control measures (인삼의 질병.병원균 및 방지책에 관하여)

  • 오승환;박창석
    • Journal of Ginseng Research
    • /
    • v.4 no.2
    • /
    • pp.186-193
    • /
    • 1980
  • The causal organism of Phytophthora disease on Panax ginseng Meyer in Korea was isolated and identified as Phytophthora cactorum. It's pathogenicity, etiology, and possible control measures were investigated. Disease symptoms on various parts of ginseng plants were also described The fungus caused seedling and mature plant blight and root rot. Oospores were easily formed on potato dextrose agar and corn meal agar. Oospores, however, were not formed in the diseased root tissues but did in the in footed shoots such as leaves, petioles, and stems and in the inoculated berries.

  • PDF

On the Root Rot of Ginseng(I) (인삼근부병에 관한 연구 1)

  • 김종희;이민웅
    • Korean Journal of Microbiology
    • /
    • v.12 no.2
    • /
    • pp.94-98
    • /
    • 1974
  • This study was conducted from April 1 to September 31, 1973. Ten strains of Fusarium spp. were isolated from the diseased ginseng in two local areas at Kangwha-Gun nad Kumsan-Gun in Korea. Among of them, 2 strains ($G_1$, $G_4$) did not have virulence to ginseng in reinoculation. Their cultural, morphological characteristic and hose virulence to pea seedling were examined. Taxonomical identification of 8 isolates followed by the method of Wollenweber, Snyder nad Toussoun, Booth, Matuo and Snyder. All of eight strains were identified as the Fusarium solani f.sp.pisi(Jones) Synd. et Hans.

  • PDF

Determination of Optimal Seedling Age for Bag Culture of Sweet Pepper(Capsicum annuum L.) (단고추 자루식 양액재배시 적정 육묘일수 구명)

  • 김경제;우인식;이은모;인민식;김진한
    • Journal of Bio-Environment Control
    • /
    • v.9 no.3
    • /
    • pp.146-150
    • /
    • 2000
  • This study was conducted to investigate the effect of seedling age on quality and yield in bag culture of sweet pepper. Seedlings of 20, 30, 40, 50, and 60 days old were compared. 60 days old seedlings grew faster than 30 or 40 days old seedlings. Mean days to bloom after sowing was fastest as 48 days in 30 days old seedling, followed by 20 days old seedlings. Rot activity was higher in 20 or 30 days old seedlings. Number and length of first lateral roots with thickness of 1.5mm or less, reached to 106.5 and 1.085 cm, respectively in 30 days old seedlings. Root weight, root length, and number of primary lateral roots were the greatest in 30 days old seedling. Greater early yield a obtained in 50 and 60 days old seedling, while late yield was grater in 30 or 40 days old seedlings.

  • PDF

Bacillus spp. as Biocontrol Agents of Root Rot and Phytophthora Blight on Ginseng

  • Bae, Yeoung-Seuk;Park, Kyungseok;Kim, Choong-Hoe
    • The Plant Pathology Journal
    • /
    • v.20 no.1
    • /
    • pp.63-66
    • /
    • 2004
  • Ginseng (Panax ginseng) is one of the most widely cultivated medicinal herbs in Korea. However, yield losses reached up to 30-60% due to various diseases during 3 or 5 years of ginseng cultivation in the country. Therefore, successful production of ginseng roots depends primarily on the control of diseases. The objective of this study was to select potential biocontrol agents from rhizobacteria isolated from various plant internal root tissues for the control of multiple ginseng diseases as an alternative to fungicides. Among 106 Bacillus strains, two promising biocontrol agents, Bacillus pumilus strain B1141 and Paenibacillus lentimobus strain B1146, were selected by screening against root rot of ginseng caused by Cylindrocarpon destructans in a greenhouse. Pre-inoculation of selected isolates to seed or l-year-old root of ginseng resulted in stimulation of shoot and/or root growth of seedlings, and successfully controlled root rot caused by C. destructans (P<0.05). Furthermore, drenching of cell suspension of the selected isolates on seedling-growing pots reduced the incidence of Phytophthora blight after the seedlings were challenged with zoospores of Phytophthora cactorum (P<0.05). P. lentimorbus strain B1146 showed antifungal activity against various soil-borne pathogens in vitro, while B. pumilus strain B1141 did not show any. Results of this study suggest that some rhizobacteria can induce resistance against various plant diseases on ginseng.

Seedling Growth of Red Pepper and Antagonism on Alternaria alternata Causing Black Rot by Bacillus subtilis J-24 isolated from Red Pepper Rhizosphere (고추 근권에서 분리한 Bacillus subtilis J-24의 검은 곰팡이병원균 Alternaria alternata에 대한 길항력 및 고추의 초기 생육에 미치는 영향)

  • Joo, Gil-Jae;Kim, Hak-Yoon;Hur, Sang-Sun;Woo, Churl-Joo;Rhee, In-Koo
    • Current Research on Agriculture and Life Sciences
    • /
    • v.17
    • /
    • pp.7-13
    • /
    • 1999
  • Thirty bacteria were isolated from the red pepper rhizosphere. The isolates were screened for antagonism to Alternaria alteranta causing red pepper black rot. Antagonistic bacterium No. J-24 was selected among the isolated bacteria and was identified as Bacillus subtilis based on morphological and physiological characteristics and MIDI system. B. subtilis J-24 showed antifungal activities against A. alternata(inhibition percentage, 99%), Botrytis cinerea, Phytophthora capsici, Pythium ultimum, Colletotrichum gloeosporioides, Stemphylium botryosum. The growth of red pepper seedling was promoted as compared to control when the microbial inoculants was mixed in bed soil. In the mixed microbial inoculants bed soil, the leaf area of red pepper was increased of 15 percent, the hypocotyl weight 12 percent, the root length 12 percent, total dry weight 13 percent as compared to those grown in the general bed soil.

  • PDF

Significance of Semame Seedborne Fungi, with special Reference to Corynespora cassiicola (참깨의 종자전염성 진균과 그 병원성 : Corynespora cussiicola를 중심으로)

  • Yu Seung-Heon
    • Korean journal of applied entomology
    • /
    • v.20 no.4 s.49
    • /
    • pp.183-190
    • /
    • 1981
  • Alternaria sesami, A. sesamicola, A. tenuis, A. longissima, Cercospora sesami, Cephalosporium sp., Corynespora cassiicola, Fusarium equiseti, F. moniliforme, F. oxysporum, F. semitectum, Macrophomina phaseolina and Myrothecium roridum were detected from 40 seed samples of sesame. A sesami, A. sesamicola, A. tenuis and C. cassiicola were the predominant fungi. Except C. cassiicola, all fungi were almost completly reduced and wiped out the infection by pretreatment with chlorine. Plating components also indicate that C. cassiicola was well-established infections. Seedborne infection of C. cussiicola caused heavy seed rot and seedling mortality. Detailed description has been given on the habit character of C. cassiicola under stereoscopic microscope and the variation in colony character and spore morphology have been taken into account. In inoculation experiments, C. cassiicola produced severe leaf and stem spots and blights on sesame plants resulted in ultimate death of the plants. A. sesami, A. sesamicola A. longissima and C. sesami also produced mild to severe leaf spotting and leaf blight when suspension of their conidia were sprayed on to plants. In soil inoculation experiments, F. oxysporum and M. phaseolina were the most pathogenic causing seed rot and seedling blight.

  • PDF

Seed-born Burkholderia glumae Infects Rice Seedling and Maintains Bacterial Population during Vegetative and Reproductive Growth Stage

  • Pedraza, Luz Adriana;Bautista, Jessica;Uribe-Velez, Daniel
    • The Plant Pathology Journal
    • /
    • v.34 no.5
    • /
    • pp.393-402
    • /
    • 2018
  • Rice world production is affected due to the growing impact of diseases such as bacterial panicle blight, produced by Burkholderia glumae. The pathogen-induced symptoms include seedling rot, grain rot and leafsheath browning in rice plants. It is currently recognized the entrance of this pathogen to the plant, from infected seeds and from environmental sources of the microorganism. However, it is still not fully elucidated the dynamics and permanence of the pathogen in the plant, from its entry until the development of disease symptoms in seedlings or panicles. In this work it was evaluated the infection of B. glumae rice plants, starting from inoculated seeds and substrates, and its subsequent monitoring after infection. Various organs of the plant during the vegetative stage and until the beginning of the reproductive stage, were evaluated. In both inoculation models, the bacteria was maintained in the plant as an endophyte between $1{\times}10^1$ and $1{\times}10^5cfu$ of B. $glumae.g^{-1}$ of plant throughout the vegetative stage. An increase of bacterial population towards initiation of the panicle was observed, and in the maturity of the grain, an endophyte population was identified in the flag leaf at $1{\times}10^6cfu$ of B. $glumae.g^{-1}$ fresh weight of rice plant, conducting towards the symptoms of bacterial panicle blight. The results found, suggest that B. glumae in rice plants developed from infected seeds or from the substrate, can colonize seedlings, establishing and maintaining a bacterial population over time, using rice plants as habitat to survive endophyticly until formation of bacterial panicle blight symptoms.

Minimum Raising Duration of Infant Rice Seedling for Machine Transplanting (벼 기계이앙용 어린모 최소 육묘기간)

  • Kim, Je-Kyu;Lee, Moon-Hee;Oh, Yun-Jin
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.37 no.1
    • /
    • pp.59-67
    • /
    • 1992
  • The duration of raising seedling of infant rice seedling(IRS) in machine transplanting is 8 to 10 days. This experiment was conducted to investigate the minimum duration of IRS's raising seedling and its method by the combination of several treatments such as plant growth regulator, root-break-seat and temperature. The rice seeds of Hwaseongbyeo was soaked in the solution of metalaxyl for 24 hours at room temperature. Metalaxyl (25% wettable powder), a fungicide, was used in 1, 000 times dilution as a promting substance on the root-mat formation of IRS. The application of fungicide in the nursery soil for the controlling of damping-off and physiologyical seedling rot was omitted due to the metalaxyl seed-soaking treatment. Seeding rate was 220g per seed tray (30$\times$60$\times$3cm). To promote the root-mat formation of IRS, the sheets of polyethylene vinyl and absorptive paper were placed bottom the seed tray. The root-mat formation of IRS was promoted at higher temperature and longer duration of raising seedling. The metalaxyl-treated seeds markedly increased the root length and rooting activity of IRS as compared with the control, thus the root-mat formation was excellent. The absorptive paper with polyethylene vinyl as root-break-seat showed a better root-mat formation compared with control, polyethylene vinyl, alone. The minimum duration of raising seedling of IRS was 5 days after sowing based on the root-mat formation and seedling height under the condition of metalaxyl seed treatment, absorptive paper with polyethylene vinyl as a root-break-seat and the raising seedling temperature 30/2$0^{\circ}C$ (day /night).

  • PDF

Effects of Irrigation and Ginseng Root Residue on Root Rot Disease of 2-Years-Old Ginseng and Soil Microbial Community in the Continuous Cropping Soil of Ginseng (인삼 연작토양에서 관수 및 인삼뿌리 잔사물이 토양 미생물상 및 뿌리썩음병 발생에 미치는 영향)

  • Lee, Sung Woo;Lee, Seung Ho;Seo, Moon Won;Park, Kyung Hoon;Jang, In Bok
    • Korean Journal of Medicinal Crop Science
    • /
    • v.26 no.5
    • /
    • pp.345-353
    • /
    • 2018
  • Background: Some phenolics detected in the soil may inhibit the seed germination and seedling growth of ginseng (Panax ginseng). This study investigated the effect of irrigation and ginseng root residue addition on the soil microbial community and root rot disease in 2-year-old ginseng. Methods and Results: Each $20{\ell}$ pot was filled with soil infected with ginseng root rot pathogens, and irrigated daily with $2{\ell}$ of water for one month. After the irrigation treatment, ginseng fine root powder was mixed with the irrigated soil at a rate of 20 g per pot. In descending order, ${NO_3}^-$, electric conductivity (EC), exchangeable Na (Ex. Na) and K (Ex. K) decreased due to irrigation. In descending order, ${NO_3}^-$, EC, Ex. K, and available $P_2O_5$ increased with the additon of ginseng powder to the soil. The abundance of Trichoderma crassum decreased with irrigation, but increased again with the incorporation of ginseng powder. The abundance of Haematonectria haematococca increased with irrigation, but decreased with the incorporation of ginseng powder. The abundance of Cylindrocarpon spp. and Fusarium spp., which cause ginseng root rot, increased with the incorporation of ginseng powder. The abundance of Arthrobacter oryzae and Streptomyces lavendulae increased with irrigation. The abundance of Streptomyces lavendulae decreased, and that of Arthrobacter spp. increased, with the incorporation of ginseng powder. Aerial growth of ginseng was promoted by irrigation, and ginseng root rot increased with the incorporation of ginseng powder. Conclusions: Ginseng root residues in the soil affected soil nutrients and microorganisms, and promoted ginseng root rot, but did not affect the aerial growth of ginseng.

Investigation of Emergence Conditions and Plug Seedling Periods in Rehmannia glutinosa (Gaertn.) Libosch. ex Steud. (지황의 출아조건 및 플러그 육묘기간 구명 연구)

  • Lee, Sang Hoon;Koo, Sung Cheol;Hur, Mok;Lee, Woo Moon;Park, Min Su;Han, Jong Won
    • Korean Journal of Medicinal Crop Science
    • /
    • v.27 no.4
    • /
    • pp.271-277
    • /
    • 2019
  • Background: Rehmannia glutinosa (Gaertn.) Libosch. ex Steud. has long been used as a traditional medicinal plant in Korea. This study was carried out to investigate the emergence conditions during the seedling periods in R. glutinosa. Methods and Results: The rhizomes of R. glutinosa variety (Jihwang 1) were harvested in the 22, March, 2018. The rhizomes were sown on in 50-cell plug trays. The emergence rates of seedlings at $15^{\circ}C$, $20^{\circ}C$, $25-40^{\circ}C$, and $45^{\circ}C$ treatment seedling were 1.3%, 96%, 100% and 0%, respectively. Rhizome rot was occurred at the temperature of $15^{\circ}C$ and $45^{\circ}C$. The emergence rates of seedlings in high moisture (HM), moderate moisture (MM) and low moisture (LM) treatments at $35^{\circ}C$ were 99.3%, 100%, and 0%, respectively. Drought damage was recorded in plant with the LM treatment. Seedling quality surveys were carried out at 10-days intervals from 10 to 60 days after sowing (DAS). Leaf length and leaf width were increasing until 50 DAS and the number of leaves was increasing until 60 DAS. Root length was increasing until 40 DAS, and then, flowering occurred from 30 to 60 DAS. Lastly, at 40 DAS, leaf aging and root enlargement was observed. Conclusions: We concluded that the emergence of seedlings was possible in the range of 20 to $40^{\circ}C$. Considering drying and rotting damage, we concluded that the moderate level of moisture is most appropriate for seedling emergence. In addition, we concluded that optimal seedling periods are between 30 and 40 DAS.