• Title/Summary/Keyword: Seed-borne

Search Result 91, Processing Time 0.033 seconds

Prevalence and Transmission of Seed-Borne Fungi of Maize Grown in a Farm of Korea

  • Basak, A.B.;Lee, Min-Woong
    • Mycobiology
    • /
    • v.30 no.1
    • /
    • pp.47-50
    • /
    • 2002
  • Seed-borne fungi of some maize cultivars/lines grown during the months from May to September of 2001, collected from Dongguk University farm, Go Young City, IL Sang Gu, Korea were detected by blotter method. In all six fungi namely Alternaria alternata(Fr.) Keissler, Aspergillus niger Van Tiegh, Fusarium moniliforme Sheldon, Fusarium sp., Penicillium sp. and Ustilago zeae Unger. were found to associated with maize seeds. Prevalence of seed-borne fungi also varied. The highest percentages of seed-borne fungi were recorded with Fusarium moniliforme and the lowest in Penicillium sp. Transmission of all seed-borne pathogens from seeds to seedlings were also detected by test tube seedling symptom test. Among the seed-borne fungi, Alternaria alternata, Fusarium moniliforme and Fusarium sp. produced distinct seed rot and seedling infection symptoms. All the transmitted seed-borne fungi might be caused primary source of infection to the maize crop.

The Effect of Seed-borne Mycoflora from Sorghum and Foxtail Millet Seeds on Germination and Disease Transmission

  • Yago, Jonar I.;Roh, Jae-Hwan;Bae, Soon-Do;Yoon, Young-Nam;Kim, Hyun-Ju;Nam, Min-Hee
    • Mycobiology
    • /
    • v.39 no.3
    • /
    • pp.206-218
    • /
    • 2011
  • The seed-borne mycoflora of sorghum and foxtail millet collected from different growing areas in South Korea were isolated and taxonomically identified using dry inspection, standard blotter and the agar plate method. We investigated the in vitro and in vitro germination rates of disinfected and non-disinfected seeds of sorghum and foxtail millet using sterilized and unsterilized soil. The percent recovery of seed-borne mycoflora from the seed components of sorghum and foxtail millet seeds was determined and an infection experiment using the dominant species was evaluated for seedling emergence and mortality. A higher number of seed-borne fungi was observed in sorghum compared to that of foxtail millet. Eighteen fungal genera with 34 fungal species were identified from the seeds of sorghum and 13 genera with 22 species were identified from the seeds of foxtail millet. Five dominant species such as Alternaria alternata, Aspergillus flavus, Curvularia lunata, Fusarium moniliforme and Phoma sp. were recorded as seed-borne mycoflora in sorghum and 4 dominant species (Alternaria alternata, Aspergillus flavus, Curvularia lunata, Fusarium moniliforme) were observed in foxtail millet. The in vitro and in vitro germination rates were higher using disinfected seeds and sterilized soil. More seed-borne fungi were recovered from the pericarp compared to the endosperm and seed embryo. The percent recovery of seed-borne fungi ranged from 2.22% to 60.0%, and Alternaria alternata, Curvularia lunata and 4 species of Fusarium were isolated from the endosperm and embryo of sorghum and foxtail millet. Inoculation of the dominant seed-borne fungi showed considerable mortality of seedlings. All the transmitted seed-borne fungi might well be a primary source of infection of sorghum and foxtail millet crops.

Plant Protective and Growth Promoting Effects of Seed Endophytes in Soybean Plants

  • Jiwon Kim;Seong-Ho Ahn;Ji Sun Yang;Seonwoo Choi;Ho Won Jung;Junhyun Jeon
    • The Plant Pathology Journal
    • /
    • v.39 no.5
    • /
    • pp.513-521
    • /
    • 2023
  • Seed-borne diseases reduce not only the seed germination and seedling growth but also seed quality, resulting in the significant yield loss in crop production. Plant seed harbors diverse microbes termed endophytes other than pathogens inside it. However, their roles and application to agricultures were rarely understood and explored to date. Recently, we had isolated from soybean seeds culturable endophytes exhibiting in-vitro antagonistic activities against common bacterial and fungal seed-borne pathogens. In this study, we evaluated effects of seed treatment with endophytes on plant growth and protection against the common seed-borne pathogens: four fungal pathogens (Cercospora sojina, C. kikuchii, Septoria glycines, Diaporthe eres) and two bacterial pathogens (Xanthomonas axonopodis pv. glycines, Pseudomonas syringae pv. tabaci). Our experiments showed that treatment of soybean seeds with seed endophytes clearly offer protection against seed-borne pathogens. We also found that some of the endophytes promote plant growth in addition to the disease suppression. Taken together, our results demonstrate agricultural potential of seed endophytes in crop protection.

Culturable Endophytes Associated with Soybean Seeds and Their Potential for Suppressing Seed-Borne Pathogens

  • Kim, Jiwon;Roy, Mehwish;Ahn, Sung-Ho;Shanmugam, Gnanendra;Yang, Ji Sun;Jung, Ho Won;Jeon, Junhyun
    • The Plant Pathology Journal
    • /
    • v.38 no.4
    • /
    • pp.313-322
    • /
    • 2022
  • Seed-borne pathogens in crops reduce the seed germination rate and hamper seedling growth, leading to significant yield loss. Due to the growing concerns about environmental damage and the development of resistance to agrochemicals among pathogen populations, there is a strong demand for eco-friendly alternatives to synthetic chemicals in agriculture. It has been well established during the last few decades that plant seeds harbor diverse microbes, some of which are vertically transmitted and important for plant health and productivity. In this study, we isolated culturable endophytic bacteria and fungi from soybean seeds and evaluated their antagonistic activities against common bacterial and fungal seed-borne pathogens of soybean. A total of 87 bacterial isolates and 66 fungal isolates were obtained. Sequencing of 16S rDNA and internal transcribed spacer amplicon showed that these isolates correspond to 30 and 15 different species of bacteria and fungi, respectively. Our antibacterial and antifungal activity assay showed that four fungal species and nine bacterial species have the potential to suppress the growth of at least one seed-borne pathogen tested in the study. Among them, Pseudomonas koreensis appears to have strong antagonistic activities across all the pathogens. Our collection of soybean seed endophytes would be a valuable resource not only for studying biology and ecology of seed endophytes but also for practical deployment of seed endophytes toward crop protection.

Establishment of the Chickpea Wilt Pathogen Fusarium oxysporum f. sp. ciceris in the Soil through Seed Transmission

  • Pande S.;Rao, J. Narayana;Sharma M.
    • The Plant Pathology Journal
    • /
    • v.23 no.1
    • /
    • pp.3-6
    • /
    • 2007
  • Chickpea wilt caused by Fusarium oxysporum f. sp. ciceris(FOC) is the most destructive disease in India. It is seed-borne as well as soil-borne pathogen. The role of seed-borne FOC in introducing and establishing wilt in FOC free soils is unknown. Using seeds of FOC infected chickpea cultivar K 850, we provided an evidence of establishing wilt disease in the FOC free soils within three crop cycles or seasons. In the first cycle, typical wilt symptoms were observed in 24 pots in 41 days after sowing. These 24 pots were used for second and third cycles without changing the soil. These 24 pots were sown with seeds collected from healthy plants of a susceptible cultivar JG 62, one seed per pot and development of wilt symptom was recorded. Wilt symptoms appeared in all the pots 26 days after sowing in second cycle and in 16 days after sowing in third cycle. On selective medium, all of the wilted plants yielded FOC in all the three cycles indicating that the mortality was due to wilt. FOC propagules on selective medium were 172, 1197, and 2280 $g^{-1}$ soil at the end of the first, second, and third cycles, respectively. These studies indicated that Fusarium wilt of chickpea is seed-borne and seeds harvested from wilted plants when mixed with healthy seeds can carry the wilt fungus to new areas and can establish the disease in the soil to economic threshold levels within three seasons.

Seed-borne Infection of Alternaria sesami and Corynespora cassiicola in Sesame, Damage to Seeds and Seedlings and Control by Seed Treatment (참깨의 종자전염성(種子傳染性) Alternaria sesami와 Corynespora cassiicola에 관(關)하여 - 종자(種子) 및 유묘(幼苗)에 미치는 피해(被害)와 종자소독(種子消毒)의 효과(效果) -)

  • Yu, Seung Hun
    • Korean Journal of Agricultural Science
    • /
    • v.10 no.2
    • /
    • pp.269-276
    • /
    • 1983
  • Out of 50 seed samples of Sesamum indicum L. tested, Alternaria sesami and Corynespora cassiicola were detected in 29 samples and 38 samples, respectively. Heavy infection of A. sesami and C. cassiicola caused seed rot and seedling blight on water agar as well as in pots. In case of light infection the seed germinated showing elongation of the radicle and hypocotyl, but soon light brown or dark brown lesions appeared at certain parts of the shoot and root where sporulation of the fungi was observed after prolonged incubation in moisture. Four seed disinfectants were compared for the control of seed-borne infection of A. sesami and C. cassiicola. Complete control of seed-borne infection of C. cassiicola was obtained by seed treatment with Benlate T and Homai and seed treatment with Busan 30 was found superior to control seed-borne infection of A. sesami.

  • PDF

Effect of Sodium Hypochlorite Treatment on Incidence of Seed-borne Fungi in Several Crop Seeds (Sodium Hypochlorite 처리가 몇가지 작물의 종자소독에 미치는 효과)

  • Ku, Ja Hyeong;Yu, Seung Hun;Lee, Hyang Burm
    • Korean Journal of Agricultural Science
    • /
    • v.20 no.1
    • /
    • pp.18-24
    • /
    • 1993
  • This experiment was focused on determining the potential of sodium hypochlorite (NaOCl) as fungicide against seed-borne fungi. Effects of NaOCl to control seed-borne fungi were compared to the those of Benlate T in several crop seeds. 1. The effect of NaOCl on disinfection of sesame seeds without imparing germination was highest in the range of 1-2% solution for 10 min. Also, a 30 min immersion of rice seed in 1-2% solution reduced incedence of seed-borne fungi. 2. Alternaria spp. in seeds of radish and chinese cabbage and Colletoricum spp. in pepper were significantly reduced by a 10 min immersion of seeds in 1% NaOCl. 3. The effective control range of NaOCl for seed-borne fungi was much wider than that of Benlate T in sesame seeds. No clear difference between chemicals was found in rice seeds. However, germination of seeds were impaired at 1-2% NaOCl immersion for more than 1 hour.

  • PDF

Investigation of Prohibited Seed-Borne Plant Pathogenic Bacteria in Korea (국내 종자전염 규제 식물병원세균 조사)

  • Hong, Yeon-Seok;Choi, Hyun Ju;Lee, Ingyeong;Lim, Yeon-Jeong;Park, Sung Woo;Nam, Bong Woo;Lee, Bu Ja;Park, Duck Hwan
    • Research in Plant Disease
    • /
    • v.26 no.3
    • /
    • pp.134-143
    • /
    • 2020
  • The goal of this manuscript is to determine seed-borne plant pathogenic bacteria and phytoplasmas among quarantine pests in Korea. Four and two prohibited bacteria and phytoplasmas, respectively, and 35 and 17 restricted bacteria and phytoplasmas, respectively, were assessed whether they are seed-borne or not based on preliminary reports. As results, two species of prohibited bacteria, eighteen species of restricted bacteria, and one species of restricted phytoplasma have been determined as being seed-borne plant pathogenic bacteria. Thus, quarantine fields must account for these lists once inspection has been conducted on imported seeds and also use of these lists can help to reduce the production of new diseases that can spread from infected imported seeds.

Seed Infection and Damage to Rice Seeds and Seedlings by Seed-Borne Gerlachia oryzae (벼 갈색잎마름병균(Gerlachia oryzae)의 종자감염과 종자감염이 벼종자 및 유묘에 미치는 피해)

  • Kim Wan Gyu;Park Jong Seong;Yu Seung Hun
    • Korean journal of applied entomology
    • /
    • v.23 no.2 s.59
    • /
    • pp.126-131
    • /
    • 1984
  • Twenty one fungi were detected from 26 rice seed samples obtained from Yeongnam Crop Experiment Station, Honam Crop Experiment Station, Chungnam Provincial Office of Rural Development and farmers of Chungnam Province. Gerlachia oryzae was one of frequently detected fungi with $1.0\~45.0\%$ of detection ratio from 22 rice seed samples. The deep-freezing method was selected as the most suitable for routine seed health testing when the blotter method, deep-freezing method and agar plate method were evaluated for efficiency of detecting seed-borne G. oryzae from rice seeds. Our data obtained by seed component plating technique suggested that G. oryzae was present not only on chaff, in endosperm and in seed coat, but also in the embryo. Seed-borne G. oryzae caused seed rot, seedling blight and symptom of brownish discoloration on coleoptile primary and 2nd leaf when the infected seeds were sown in agar of test tube or in soil.

  • PDF

Antagonistic Potentiality of Trichoderma harzianum Towards Seed-Borne Fungal Pathogens of Winter Wheat cv. Protiva In Vitro and In Vivo

  • Hasan, M.M.;Rahman, S.M.E.;Kim, Gwang-Hee;Abdallah, Elgorban;Oh, Deog-Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.5
    • /
    • pp.585-591
    • /
    • 2012
  • The antagonistic effect of Trichoderma harzianum on a range of seed-borne fungal pathogens of wheat (viz. Fusarium graminearum, Bipolaris sorokiniana, Aspergillus spp., and Penicillium spp.) was assessed. The potential of T. harzianum as a biocontrol agent was tested in vitro and under field conditions. Coculture of the pathogens and Trichoderma under laboratory conditions clearly showed dominance of T. harzianum. Under natural conditions, biocontrol effects were also obtained against the test fungi. One month after sowing, field emergence (plant stand) was increased by 15.93% over that obtained with the control treatment, and seedling infection was reduced significantly. Leaf blight severity was decreased from 22 to 11 at the heading stage, 35 to 31 at the flowering stage, and 86 to 74 at the grain filling stage. At harvest, the number of tillers per plant was increased by 50%, the yield was increased by 31.58%, and the 1,000-seed weight was increased by 21%.