• Title/Summary/Keyword: Seed yield

Search Result 1,154, Processing Time 0.038 seconds

Estimation of Oil Yield of Perilla by Seed Characteristics and Crude Fat Content

  • Oh, Eunyoung;Lee, Myoung Hee;Kim, Jung In;Kim, Sungup;Pae, Suk-Bok;Ha, Tae Joung
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.63 no.2
    • /
    • pp.158-163
    • /
    • 2018
  • Perilla (Perilla frutescens var.frutescens) is an annual plant of the Lamiaceae family, mainly grown for obtaining oil by press extraction after roasting the seeds. Oil yield is one of its important traits, but evaluating this yield is time-consuming, requires many seeds, and is hard to adjust to pedigrees in a breeding field. The objective of this study was to develop a method for selecting high-oil-yield lines in a breeding population without oil extraction. Twenty-three perilla cultivars were used for evaluating the oil yield and seed traits such as seed hardness, seed coat thickness, seed coat proportion and crude fat. After evaluation of the seed traits of 23 perilla cultivars, the ranges of oil yields, seed hardness, seed coat thickness, seed coat proportion, 100-seed weight, and crude fat were 24.68-38.75%, 157-1166 gf, $24-399{\mu}m$, 15.4-41.5%, 2.79-6.69 g, and 33.0-47.8%, respectively. In an analysis of correlation coefficients, the oil yield negatively correlated with seed length, seed width, the proportion of seed coat, seed hardness, and 1000-seed weight, but positively correlated with crude fat content. It was observed that as the seed coat proportion increased, the seed coat thickness, hardness, and 1000-seed weight also increased. Multiple linear regression (MLR) was employed to find major variables affecting the oil yield. Among the variables, traits crude fat content and seed coat proportion were assumed to be indirect parameters for estimating the potential oil yield, with respect to a significant positive correlation with the observed oil yield ($R^2=0.791$). Using these two parameters, an equation was derived to predict the oil yield. The results of this study show that various seed traits in 23 perilla cultivars positively or negatively correlated with the oil yield. In particular, crude fat and the seed coat proportion can be used for predicting the oil yield with the newly developed equation, and this approach will improve the efficiency of selecting prominent lines for the oil yield.

Improvement of Hairy Vetch Seed Production by Mixture Cropping of Hairy Vetch and Triticale

  • Seo Jong Ho
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.50 no.2
    • /
    • pp.73-78
    • /
    • 2005
  • Demand for the domestic hairy vetch seed production will be increased with the increasing interest of environment-friendly agriculture in Korea. This study was conducted during from 2000 fall to 2003 spring at upland field of National Institute of Crop Science in Suwon, Korea to compare wheat and triticale (TC) as stake crop of hairy vetch (HV), and to know proper seeding rates and ratios between TC and HV for the maximum HV seed production. As supporting crop of HV, TC was superior to wheat at the points of higher HV seed yield, stronger TC stalk for supporting, consistence of ripening stage of two seeds. In seeding method, row seeding was superior to broadcast seeding at the points of less lodging and higher HV seed yield. HV seed yield decreased with the increase of TC seeding rate in mixture cropping (row seeding), particularly at TC seeding rates over 5kg/10a. HV seed yield increased with the increase of HV seeding rate at the condition of TC seeding rates under 5kg/10a in spite of higher lodging of mixed crops at higher HV seeding rate due to higher HV aboveground dry matter. Maximum HV seed yield was obtained at TC seeding rate of $1\~1.5kg/10a$ as indicating HV seed yield 176kg/l0a (CV. Madison) at seeding rate of TC 1kg/10a + HV 2 kg/10a in 2001, and HV seed yield 96kg/10a (CV. Common) at seeding rate of TC 1.5kg/10a + HV 4.5kg/10a in 2003. Use of all-purpose combine harvester for harvesting and appliance for separation of mixed seeds using centrifugal force, which are prerequisite for HV seed production, was excellent in the simultaneous seeds production system of HV and TC.

Yield and Seed Quality as Affected by Water Deficit at Different Reproductive Growth Stages in Soybean

  • Kim, Wook-Han;Hong, Byung-Hee;Kim, Seok-Dong
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.44 no.4
    • /
    • pp.321-329
    • /
    • 1999
  • The effect of water deficits on soybean [Glycine max (L.) Merr.] could appear on seed quality through changes of morphological plant characteristics. Two Korean genotypes, Hwangkeum (determinate growth habit) and Muhan (indeterminate growth habit), were used to examine the influences of treatment stage and method of water deficit during reproductive growth period on yield and seed quality of soybean. Water deficit at R5 or R6 stages was as damaging to seed quality as double water-deficit treatments at R2+R5 or R2+R6. However, seed from double water-deficit treatment tended to have lower oxidation-reduction potential compare to the corresponding single water-deficit treatment. In comparison with Muhan, Hwangkeum had significantly greater oxidation-reduction potential value. Seed yield per plant in both genotypes depended greatly on seed yield of branches. However, the proportion of number of branch seed to total seed umber in Hwangkeum was increased as the water deficit was applied during later reproductive stage, whereas, in Muhan the proportion was lower. Water-deficit treatments including the single and double water-deficit treatments and non-stressed treatment were able to be classified into five groups for Hwangkeum and four groups for Muhan based on the influences on yield components, number of pod, number of seed, and single seed weight, using principal component analysis. In both genotypes, R2+R5 water-deficit treatment decreased number of pod and seed, but increased single seed weight. On the contrary, R6 or R2+R6 stress increased the pod and seed number, but decreased single seed weight.

  • PDF

Yield Response of Soybean [Glycine max (L.) Merrill] to High Temperature Condition in a Temperature Gradient Chamber

  • Baek, Jae-Kyeong;Sang, Wan-Gyu;Kim, Jun-Hwan;Shin, Pyong;Cho, Jung-Il;Seo, Myung-Chul
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.65 no.4
    • /
    • pp.339-345
    • /
    • 2020
  • Recently, abnormal weather conditions, such as extreme high temperatures and droughts, have increased in frequency due to climate change, there has accordingly been growing concern regarding the detrimental effects on field crop, including soybean. Therefore, this study was conducted to examine the effects of increased temperatures on soybean growth and yield using a temperature gradient chamber (TGC). Two major types of soybean cultivar, a medium- seed cultivar such as Daepung-2 and a large-seed cultivar such as Daechan, were used and four temperature treatments, aT+1℃ (ambient temperature+1℃), aT+2℃ (ambient temperature+2℃), aT+3℃ (ambient temperature+3℃) and aT+4℃ (ambient temperature+4℃) were established to examine the growth response and seed yield of each cultivar. Seed yield showed a higher correlation with seed weight (r=0.713***) and an increase in temperature affected seed yield by reducing the single seed weight. In particular, the seed growth rate of the large-seed cultivar (Daechan) increased at high temperature, resulting in a reduction in the number of days for full maturity. Our results accordingly indicate that large-seed cultivar, such as Daechan, is potentially vulnerable to high temperature stress. The results of this study can be used as basic data in the development of cultivation technology to reduce the damage caused by elevated temperatures. Also, further research is required to evaluate the response of each process contributing to seed yield production under high temperatures.

Effects of Rhizobium Inoculant, Nitrogen, Phosphorus, and Molybdenum on Nodulation, Yield, and Seed Protein in Pea

  • Rabbani M. G.;Solaiman A. R. M.;Hossain K. M.;Hossain T.
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.50 no.2
    • /
    • pp.112-119
    • /
    • 2005
  • The effects of Rhizobium inoculant, nitrogen, phosphorus, and molybdenum on nodulation, dry matter production, yield attributes, pod and seed yields, protein and phosphorus contents in seed of pea (pisum sativum) var. IPSA Motorshuti-3 were assessed by a field experiment. Among the treatments Rhizobium inoculant in combination with 25kg P and 1.5kg Mo/ha performed best in recording number of nodules/plant, total dry matter yield, number of pods/plant, number of seeds/pod, 1000-seed weight, green pod yield, green and mature seed yields of pea. The highest green pod yield of 15.37 t/ha ($97.05\%$ increase over control) and green seed yield of 9.6t/ha ($69.31\%$ increase over control) were obtained by inoculating pea with Rhizobium inoculant in association with 25kg P and 1.5 Mo/ha. The effects of 60 or 120kg N/ha were comparable to Rhizobium inoculant in most cases. There were positive correlations among yield attributes, yield, protein and phosphorus contents in seeds of pea. From the viewpoint of yield attributes, yield, and seed quality, application of Rhizobium inoculant along with 25kg P and 1.5kg Mo/ha was considered to be the balanced combination of nutrients for achieving the maximum output from cultivation of pea in Shallow-Red Brown Terrace Soil of Bangladesh.

Seed Production Studies in Italian Ryegrass ( Lolium multifiorum Lam. Italicum ) III. Effects of Autumn and Spring Defoliation on Seed Yield of Italian Ryegrass (이탈리안 라이그라스의 종자생육에 관한 연구 III. 추.춘 청예이용이 종실수량에 미치는 영향)

  • 박병훈;박희길;배상태;강정훈;이남종
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.7 no.1
    • /
    • pp.49-54
    • /
    • 1987
  • Information is needed on the plant characteristics affects by forage removal and their relationships to grain yield of italian ryegrass in order to combine herbage seed crop management and livestock farming. This study with tetraploid cv. Tetrone was carried out on the experimental field of Haenam Branch Station. treatments included two different seeding time, cutting time and frequency. Seeds were sown in row 50 cm width within the rows. The results are summarized as follows: 1. Fresh and dry matter were increased significantly in plots defoliated lately and many times but seed yield components were decreased significantly in plots defoliated in spring. 2. Autumn defoliation had no significant effect on the seed yield but seed yield were decreased significantly in plots defoliated later than 8 April. 3. Excess vegetative growth can be removed in autumn and early spring without harm to the seed crop and the most important aspect of its removal is the timing of the operation. 4. Seed yield reductions were accompanied by the decrease of inflorescences,seeds/spike, and thousand seeds weight, due to an increase in apex removal of vigorous tillers by late cutting.

  • PDF

EFFECT OF SOWING METHODS AND SEED RATES ON PRODUCTION PARAMETERS AND AVERAGE CHEMICAL COMPOSITION OF FODDER MAIZE cv. SAVAR-1

  • Rahman, M.M.;Islam, M.R.;Islam, M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.6 no.1
    • /
    • pp.123-126
    • /
    • 1993
  • Hand dibbling in rows produced higher (p < 0.05) fresh and dry matter (DM), fodder yield, higher plant density and cob yield than broadcasted. However, the varying seed rates (40, 50 and 55 kg/ha) did not affect (p < 0.05) the fresh and DM yield and cob yield except for 30 kg/ha seed rate which produced the lowest (p < 0.01). However, the overall average fresh fodder yield and the fresh and DM yield of cob were 24.97, 10.04 and 6.90 t/ha respectively. The overall average plant height (cm), cob/plant (nos.) plant/ha, (nos.) cob/ha (nos.) and weight (g) of one cob were 178, 1.11, 664141, 70104 and 145 respectively for both the sowing methods and the four seed rates. Crude protein contents of maize plant and cob by-products (8.12% and 7.34% respectively) indicated promising cattle feeds along with human food.

Influence of Moisture Content and Seed Dimensions on Mechanical Oil Expression from African Oil Bean (Pentaclethra macrophylla Benth) Seed

  • Aremu, Ademola K.;Ogunlade, Clement A.
    • Journal of Biosystems Engineering
    • /
    • v.41 no.3
    • /
    • pp.193-200
    • /
    • 2016
  • Purpose: New low-cost oilseeds are needed to meet an ever-increasing demand for oil for food, pharmaceutical, and industrial applications. African oil bean seed is a tropical crop that is underutilized and has high oil yields, but there have been no studies conducted on its mechanical oil expression up to now. The objective of this work was to investigate the effect of moisture content and seed dimensions on mechanical oil expression from the seeds. Methods: Fresh oil bean seeds were procured, de-hulled, and cleaned. Initial seed moisture content, obtained in accordance with the ASAE standard, was 12% dry basis (db). The seeds were further conditioned by dehydration and rehydration prior to oil expression to obtain four other moisture levels of 8, 10, 14, and 16% db. The major diameter of the seeds was measured using digital vernier calipers, and the seeds were classified into size dimensions (< 40, 41-45, 46-50, 51-55, and > 55 mm). The oil yield and expression efficiency were obtained in accordance with standard evaluation methods. Results: The highest oil yield and expression efficiency (47.74% and 78.96%, respectively) were obtained for a moisture content of 8% db and seed dimensions of < 40 mm, while the lowest oil yield and expression efficiency (41.35% and 68.28%, respectively) were obtained for a moisture content of 14% db and seed dimensions between 51-55 mm. A mathematical model was developed to predict oil yield for known moisture content and seed dimensions, with a coefficient of determination $R^2$ of 95% and the confidence level of the predictive model of 84.17%. The probability of prediction F ratio showed that moisture content influence was more significant than seed dimensions. Conclusions: The higher the moisture content and larger the seed dimensions, the lower the oil yield from African oil bean seeds.

Seed Production Status in Ginseng Plantations (농가포장에서의 인삼종자 생산실태)

  • Lee, Jong-Chul;Park, Hoon;Kim, Kap-Sik;Byen, Jeung-Su
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.31 no.1
    • /
    • pp.19-23
    • /
    • 1986
  • To get the basic information about ginseng seed production, yield of seed and seed quality in 27 fields were investigated. Yield of seed ranged from 4 to 10 litres per 100 kan (180cm x 90cm). Ratio of under 4mm seed is 12%, 66% for 4 to 5mm and 22% for over 5mm. Seed weight and ratio of over 4mm seed showed the decreasing tendency with the increase of seed yield per unit area. The seed yield harvested from the selected mother plants was lower than that from all plants, but seed weight and ratio of over 4mm seed were high in fields using the selected mother plants. It showed a positive correlation between length and width of seed, but no correlation between thickness and length or width. Optimum yield for high quality seed appeared under the 7 to 8 litres per 100 kan.

  • PDF

Changes in Growth Characteristics and Curcuminoid Contents of Turmeric Cultivated Using Mother and Finger Seed Rhizomes of Different Sizes (강황 종근 처리에 따른 생육특성 및 성분함량 차이)

  • Kim, Kwan Su
    • Korean Journal of Medicinal Crop Science
    • /
    • v.26 no.5
    • /
    • pp.354-361
    • /
    • 2018
  • Background: This study was conducted to investigate the growth characteristics, root yield and curcuminoid content of turmeric (Curcuma longa L.), cultivated using mother seed rhizomes (MR) and finger seed rhizome (FR) of different sizes. MR are attached to the stem, and FR are connected to the MR, and are used as a general seed rhizome. Methods and Results: Seed rhizomes of different types and sizes were used: large, medium and small for FR, and large, half-sized, and small for MR. These were assigned to the experimental groups and cultivated under greenhouse conditions. The growth characteristics, root yield, and curcuminoid content did not show clear difference between MR and FR, but suggest that the larger seed rhizomes (above 30 g) could have higher root yields. On average, harvested mother rhizomes (HMR) contained more curcuminoid than harvested finger rhizomes (HFR), while the yield of HFR was higher than that of HMR. The higher weight of harvested roots correlated significantly with elevated curcuminoid content. Conclusions: The two seed rhizomes, MR and FR, did not differ in root yield and curcuminoid contents, but larger seed rhizomes may produce better root yields. This suggest that the optimum seed rhizome is larger FR, to produce higher yields and quality in turmeric root production.