• 제목/요약/키워드: Seed storage proteins

검색결과 50건 처리시간 0.035초

Proteome Approach as a Tool for the Efficient Separation of Seed Storage Proteins from Buckwheat

  • Cho, Seong-Woo;Kwon, Soo-Jeong;Roy, Swapan Kumar;Woo, Sun-Hee
    • 한국작물학회지
    • /
    • 제60권1호
    • /
    • pp.29-32
    • /
    • 2015
  • Two-dimensional electrophoresis (2-DE) was executed to separate the seed storage proteins from the buckwheat. The proteins extracted from the whole seed proteins were better separated and observed in the use of lysis buffer. Using this method, the highly reproducible isoelectric focusing (IEF) can be obtained from polyacrylamide gels, and IEF from the polyacrylamide gel at all the possible pH range (5.0-8.0) was more easily separated than IPG (immobilized pH gradient) gels. The polyacrylamide gels in the first dimension in 2-DE was used to separate and identify a number of whole seed proteins in the proteome analysis. In this new apparatus using 2-DE, 27cm in length of plate coated with polyacrylamide gel was used and the experiment was further investigated under the various conditions.

Proteomic Approach of the Protein Profiles during Seed Maturation in Common Buckwheat (Fagopyrum esculentum Moench.)

  • Park, Min-Hwa;Shin, Dong-Hoon;Han, Myoung-Hae;Yun, Young-Ho;Bae, Jeong-Sook;Lee, Yun-Sang;Chung, Keun-Yook;Lee, Moon-Soon;Woo, Sun-Hee
    • 한국자원식물학회지
    • /
    • 제22권3호
    • /
    • pp.227-235
    • /
    • 2009
  • Single seeds of common buckwheat cultivar Suwon No. 1 when subjected to SDS-PAGE revealed very high polymorphism. High variation existed for protein or protein subunits with molecular weight 54-47kDa, 45-25kDa and 16-11kDa. The electrophoregram showed variation for globulin as well as other protein fractions. About 300 proteins were separated by two-dimensional electrophoresis in common buckwheat (Fagopyrum esculentum Moench.) seed. Seed maturation is a dynamic and temporally regulated phase of seed development that determines the composition of storage proteins reserves in mature seeds. Buckwheat seeds from 5, 10, 15, 20, and 25 days after pollination and matured stage were used for the analysis. This led to the establishment of high-resolution proteome reference maps, expression profiles of 48 spots. It was identified 48 proteins from MALDI-TOF/MS analysis of wild buckwheat seed storage proteins. The 48 proteins were found identical or similar to those of proteins reported in buckwheat and other plants; it is belonging to 9 major functional categories including seed storage proteins, stress/defense response, protein synthesis, photosynthesis, allergy proteins, amino acid, enzyme, metabolism, and miscellaneous. It appears that the major allergenic storage protein separated played the important role in buckwheat breeding and biochemical characterization.

A Systematic Proteome Study of Seed Storage Proteins from Two Soybean Genotypes

  • Cho, Seong-Woo;Kwon, Soo-Jeong;Roy, Swapan Kumar;Kim, Hong-Sig;Lee, Chul-Won;Woo, Sun Hee
    • 한국작물학회지
    • /
    • 제59권3호
    • /
    • pp.359-363
    • /
    • 2014
  • Soybean seed is a good source of plant protein in human consumables such as baby formula and protein concentrate. The seeds contain an abundance of storage proteins, namely ${\beta}$-conglycin and glycinin that account for ~ 70-80% of the total seed protein content. Proteome profiling has been proved to be an efficient way that can help us to investigate the seed storage proteins. In the present study, the seeds were removed from the pods and the cotylendonary tissues were separated from the testa for proteome analysis in order to investigate the seed storage proteins. A systematic proteome profiling was conducted through one-dimensional gel electrophoresis followed by MALDI-TOF-TOF mass spectrometry in the seeds (cotyledonary tissue) of soybean genotypes. Two dimensional gels stained with CBB, a total of 10 proteins were identified and analyzed using MASCOT search engine according to the similarity of sequences with previously characterized proteins along with the UniProt database. A total of ten proteins such as glycinin Gy4 precursor, glycinin G3 precursor, glycinin G1 precursor, glycinin chain A2B1a precursor, glycinin chain A2B1a precursor were identified in our investigation. However, the glycinin subunit may be considered to play important roles in soybean breeding and biochemical characterization. In addition, the improved technique will be useful to dissect the genetic control of glycinin expression in soybean.

Variations in Seed Storage Protein among Different Colored Soybean Varieties

  • Kim, Sun-Lim;Yun, Hong-Tae;Moon, Jung-Kyung;Park, Keum-Yong;Lee, Yeong-Ho;Ryu, Yong-Hwan
    • 한국작물학회지
    • /
    • 제49권2호
    • /
    • pp.141-147
    • /
    • 2004
  • This study was carried out to know the variation of soybean seed proteins, 11S and 7S globulins, and their amino acid compositions among different colored soybean varieties, 'Danbaegkong' (yellow), 'Pureunkong' (green) 'Jinyulkong' (brown), and 'Geoumjeongkong l' (black). Soybean seed proteins showed a wide range in molecular size, but the electrophoresis patterns of total seed protein subunits showed a similarity among different colored soybean varieties. Amino acid compositions of total seed proteins were similar for all soybean varieties tested. However, soybean varieties showed low composition rates in sulfur containing amino acids. The composition rates of cysteine and methionine in the 11S globulins were higher than those of total seed proteins and 7S globulins. Glutamic acid and glycine were higher in the 11S and 7S globulins than those of total seed proteins. However, the levels of methionine and phenylalanine are high in the 11S globulins, but those of valine and lysin are slightly lower than the 7S globulins. By using HPLC, we tried to analyse the soybean seed proteins. The 11S globulin was composed of 10 major peaks whereas the 7S globulin was composed of 4 major peaks. The composition rates of 11S related proteins have a tendency to increasing during the maturing whereas those of 7S related proteins have a tendency to decreasing. Composition rates of each peaks among different colored soybean varieties suggested that soybean seed proteins are varied, although they showed similarity in the electrophoresis patterns, and understanding of this characteristics is important for the utilization of soybeans.

인삼 종자의 저장단백질에 관한 면역 세포화학적 연구 - Tris 완충액 가용성 단백질 - (An Immunocytochemical Study on Storage Proteins of Ginseng Seed - Tris Buffer Soluble Protein -)

  • 김우갑
    • Applied Microscopy
    • /
    • 제19권2호
    • /
    • pp.74-84
    • /
    • 1989
  • 인삼 종자의 배유조직에서 Tris 완충액 가용성 저장단백질을 추출한 후 전기 영동적 분석으로 분리하여 $SP_{1}$(MW=160,000)과 $SP_2$(MW=70,000)의 두가지 저장단백질을 정제하였다. 이 두가지 저장단백질을 항원으로 사용하여 토끼에 피하주사하여 항체를 얻었으며, 이 항체를 이용하여 면역 세포화학적 금입자표지법을 실시한 결과, $SP_1$$SP_2$ 모두 구형의 protein body내에 산재하여 있음을 확인되었으며, globoid에는 이러한 두가지 단백질중 어느 것도 함유되어 있지 않는 것으로 나타났다. 또한 각각의 protein body에 함유된 $SP_1$$SP_2$의 상대적 함량에는 서로 차이가 있음이 확인되었다.

  • PDF

Changes of Chemical Components During Seed Development in Black Soybean (Glycine max L.)

  • Shim Sang In;Kang Byeung Hoa
    • 한국작물학회지
    • /
    • 제49권4호
    • /
    • pp.331-336
    • /
    • 2004
  • Changes in the level of metabolites in leaves and pods were examined with respect to the seed chemical composition in black soybean. There was no further increase in pod length after 42 days after flowering (DAF). Pod weight, however, persistently increase until 73 DAF, thereafter the weight was slightly lowered. The seed storage protein, however, increased drastically as the increasing rate of pod weight was lessened at 61 DAF. The accumulation of seed storage proteins was occurred conspicuously as the increasing rate of pod weight was slowed down. The chlorophyll content both in leaves and pods was drastically decreased after 50 DAF. The beginning of drastic reduction in chlorophyll content was occurred concomitantly with the reduction of soluble protein content in leaves. The sugar content in leaves showed similar tendency with chlorophyll and soluble protein content. The starch level in leaves, however, showed different changing pattern during seed development. The starch content in leaves was increased persistently until 66 DAF, thereafter the content was decreased drastically to about $55\%$ of maximal value at 66 DAF. Total phenolics content in leaves and the anthocyanins content in seeds were stable without noticeable increase until 66 DAF. The contents were increased dramatically after 66 DAF showing the synchronized pattern with the decrease in starch level in leaves. The levels of the selected metabolites in leaf and seed suggested that the accumulation of chemical components of black soybean seed is launched actively at 66 DAF. The profile of storage proteins was nearly completed at 61 DAF because there was no large difference in densitometric intensity among protein subunits after 61 DAF. In soybean, chemical maturation of seed begins around 61 to 66 DAF at which most metabolites in vegetative parts are decreased and remobilized into maturing seeds.

A TMT-based quantitative proteomic analysis provides insights into the protein changes in the seeds of high- and low- protein content soybean cultivars

  • Min, Cheol Woo;Gupta, Ravi;Truong, Nguyen Van;Bae, Jin Woo;Ko, Jong Min;Lee, Byong Won;Kim, Sun Tae
    • Journal of Plant Biotechnology
    • /
    • 제47권3호
    • /
    • pp.209-217
    • /
    • 2020
  • The presence of high amounts of seed storage proteins (SSPs) improves the overall quality of soybean seeds. However, these SSPs pose a major limitation due to their high abundance in soybean seeds. Although various technical advancements including mass-spectrometry and bioinformatics resources were reported, only limited information has been derived to date on soybean seeds at proteome level. Here, we applied a tandem mass tags (TMT)-based quantitative proteomic analysis to identify the significantly modulated proteins in the seeds of two soybean cultivars showing varying protein contents. This approach led to the identification of 5,678 proteins of which 13 and 1,133 proteins showed significant changes in Daewon (low-protein content cultivar) and Saedanbaek (high-protein content cultivar) respectively. Functional annotation revealed that proteins with increased abundance in Saedanbaek were mainly associated with the amino acid and protein metabolism involved in protein synthesis, folding, targeting, and degradation. Taken together, the results presented here provide a pipeline for soybean seed proteome analysis and contribute a better understanding of proteomic changes that may lead to alteration in the protein contents in soybean seeds.

Effects of Sulfur Nutritional Forms on Accumulation of Seed Storage Proteins in Soybean (Glycine max)

  • / N
    • 한국자원식물학회지
    • /
    • 제10권3호
    • /
    • pp.221-226
    • /
    • 1997
  • Improvement of seed protein quality might be an essential issus in soybean and would give more profit directly to both farmers and users. This study was carried out to investigate the effects of reduced-S form(s) on seed storage protein components in soybean during seed filling stages. The reduced-S forms during seed fill were sodium thiosulfate, sodium sulfite, sodium sulfide, thioaceteat, $\beta$-mercaptoethanol, thiourea, thiamine-HCI, L-cysteine, L-cystine, and L-methionine. Seed storage protein concentration did not appear to be affected by any reduced-S forms. However, glycinin and $\beta$-conglycinin concentration seemed to be changed greatly by L-methionine. This resulted in the increase in the 11S/7S ratio(3.58). Among the $\beta$-conglycinin, $\beta$-subunit was not accumulated at all. $\alpha$-subunit concentration appeared to be decreased and $\alpha'$-subunit concentration was not altered in comparison with sulfate control. Also, $\beta$-conglycine concentration, especially $\beta$-subunit concentration, tended to be decreased with L-cystine treatment, resulting in an increase in the 11S/7S ratio(1.83). The glycinin concentration tended to be increased at the expense of the decrease in the $\beta$-conglycinin concentration. Therefore, it is suggested that enhancing soybean protein quality would be achieved by improving metabolic pathways of S assimilation in soybean plants during seed filling period under sulfate-sufficient condition.

  • PDF

Comparison of Protein Profiles of Proso Millet (Panicum miliaceum) Seeds of Various Korean Cultivars

  • Roy, Swapan Kumar;Kwon, Soo-Jeong;Yu, Je-Hyeok;Sarker, Kabita;Cho, Seong-Woo;Moon, Young-Ja;Jung, Tae-Wook;Park, Cheol-Ho;Woo, Sun-Hee
    • 한국작물학회지
    • /
    • 제62권1호
    • /
    • pp.40-50
    • /
    • 2017
  • Seed storage proteins are used as carbon and nitrogen sources for the nutritional improvement of seeds. Since the composition of proteins from the Korean cultivars of proso millet is unknown, this study was conducted to obtain a reference map of millet seed proteins and identify the functional characteristics of the identified proteins. Proteins extracted from proso millet seeds of various cultivars were investigated using proteomic techniques such as 2-D electrophoresis coupled with mass fingerprinting; 1152 (differentially expressed) protein spots were detected on the 2-D gels. Among them, 26 reproducible protein spots were analyzed using matrix-assisted laser desorption/ionization time-of-flight/time-of-flight mass spectrometry. Out of the 26 proteins, 2 proteins were upregulated in all the millet cultivars, while 13 proteins were upregulated and 11 proteins were downregulated in 2 cultivars. Abundance of most of the identified protein species associated with polysaccharide and starch metabolism, transcription, and pathogenesis was significantly enhanced, while that of other protein species involved in glycolysis, stress response, and transduction was severely reduced. Taken together, the results suggest that the differential expression of the proteins from the four millet cultivars may be cultivar-specific. By conducting a proteomic investigation of millet seeds from different cultivars, we sought to better understand the functional categorization of individual proteins on the basis of their molecular functions. We believe that the identified proteins may help in investigating genetic variations in millet cultivars.