• Title/Summary/Keyword: Seebeck coefficient

Search Result 156, Processing Time 0.034 seconds

Synthesis and Characterization of Delafossite $CuLaO_2$ for Thermoelectric Application

  • Takahashi, Yuhsuke;Matsushita, Hiroaki;Katsui, Akinori
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1114-1115
    • /
    • 2006
  • The preparation of single-phase $CuLaO_2$ with delafossite-type structure by means of the solid-state reaction method was investigated using X-ray diffraction. The results showed that notwhistanding the fact that there was a trace of metallic copper, nearly single-phase $CuLaO_2$ was obtained by using $La(OH)_3$ as a lanthanum source and by firing the mixed powder with nonstoichiometric composition ratio of $La(OH)_3:Cu_2O=1:1.425$ in a vacuum at 1273 K for 10 h. The measurement of electrical conductivity and Seebeck coefficient showed that $CuLaO_2$ thus obtained was a p-type semiconductor and had a Seebeck coefficient of approximately $70{\mu}V/K$.

  • PDF

Thermoelectric properties of FeVSb1-xTex half-heusler alloys fabricated via mechanical alloying process

  • Hasan, Rahidul;Ur, Soon-Chul
    • Journal of Ceramic Processing Research
    • /
    • v.20 no.6
    • /
    • pp.582-588
    • /
    • 2019
  • FeVSb1-xTex (0.02 ≤ x ≤ 0.10) half-Heusler alloys were fabricated by mechanical alloying process and subsequent vacuum hot pressing. Near single half-Heusler phases are formed in vacuum hot pressed samples but a second phase of FeSb2 couldn't be avoided. After doping, the lattice thermal conductivity in the system was shown to decrease with increasing Te concentration and with increasing temperature. The lowest thermal conductivity was achieved for FeVSb0.94Te0.06 sample at about 657 K. This considerable reduction of thermal conductivities is attributed to the increased phonon scattering enhanced by defect structure, which is formed by doping of Te at Sb site. The phonon scattering might also increase at grain boundaries due to the formation of fine grain structure. The Seebeck coefficient increased considerably as well, consequently optimizing the thermoelectric figure of merit to a peak value of ~0.24 for FeVSb0.94Te0.06. Thermoelectric properties of various Te concentrations were investigated in the temperature range of around 300~973 K.

Optimized Thermoelectric Properties in Zn-doped Zintl Phase Magnesium-Antimonide

  • Rahman, Md. Mahmudur;Ur, Soon-Chul
    • Korean Journal of Materials Research
    • /
    • v.32 no.6
    • /
    • pp.287-292
    • /
    • 2022
  • Magnesium-antimonide is a well-known zintl phase thermoelectric material with low band gap energy, earth-abundance and characteristic electron-crystal phonon-glass properties. The nominal composition Mg3.8-xZnxSb2 (0.00 ≤ x ≤ 0.02) was synthesized by controlled melting and subsequent vacuum hot pressing method. To investigate phase development and surface morphology during the process, X-ray diffraction (XRD) and scanning electron microscopy (SEM) were carried out. It should be noted that an additional 16 at. % Mg must be added to the system to compensate for Mg loss during the melting process. This study evaluated the thermoelectric properties of the material in terms of Seebeck coefficient, electrical conductivity and thermal conductivity from the low to high temperature regime. The results demonstrated that substituting Zn at Mg sites increased electrical conductivity without significantly affecting the Seebeck coefficient. The maximal dimensionless figure of merit achieved was 0.30 for x = 0.01 at 855 K which is 30% greater than the intrinsic value. Electronic flow properties were also evaluated and discussed to explain the carrier transport mechanism involved in the thermoelectric properties of this alloy system.

Formulaic Understanding to Make a Strategy of Thermal Conductivity Reduction for Enhancing the Performance of Thermoelectric Materials (열전도도 저감 기반의 열전소재 성능 증대 전략 수립을 위한 수식적 이해)

  • Pi, Ji-Hee;Choi, Myung Sik;Lee, Kyu Hyoung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.29 no.4
    • /
    • pp.89-94
    • /
    • 2022
  • Thermoelectric materials can directly convert a temperature gradient to an electrical energy and vice-versa, and their performance is determined by the electrical conductivity, Seebeck coefficient, and thermal conductivity. However, it is difficult to establish an effective strategy for enhancing performance since electrical conductivity, Seebeck coefficient, and thermal conductivity are strongly dependent on the composition, crystal structure, and electronic structure of the material, and show a correlation with each other. Herein, based on the understanding of the formulas related to the performance of thermoelectric materials, we provide a methodology to establish feasible defect engineering strategies of thermal conductivity reduction for improving the performance of thermoelectric materials in connection with the experimental results.

Unidirectional Solidification of $Bi_2Te_{2.55}Se_{0.45}$ using a VGF Method (VGF법을 이용한 $Bi_2Te_{2.55}Se_{0.45}$의 일방향 응고에 관한 연구)

  • 김영희;김기수;김수룡;정상진;이윤주;박동선
    • Korean Journal of Crystallography
    • /
    • v.14 no.2
    • /
    • pp.62-66
    • /
    • 2003
  • The preparation of n-type thermoelectric material of Bi₂ Te/sub 2.55/Se/sub 0.45/ doped with CuBr₂ was carried out using a vertical gradient freezing method. With this method, unidirectional solidified Bi₂Te/sub 2.55/Se/sub 0.45/ has been obtained. XRD analysis demonstrated that Bi₂/sub 2.55/Se/sub 0.45/ 5 ingot has grown with prefer orientation of (0 1 5) face. Seebeck coefficient and electrical conductivity were measured as functions of temperature in the range of 373 K to 523 K on the sample which prepared via VGF method.

A Study on the Performance of Thermoelectric Module and Thermoelectric Cooling System (열전소자 및 열전냉각장치의 성능에 관한 연구)

  • 유성연;홍정표;심우섭
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.1
    • /
    • pp.62-69
    • /
    • 2004
  • Thermoelectric module is a device that can produce cooling in a direct manner using the electrical energy. The purpose of this study is to investigate the performance of thermoelectric module and cooling system equipped with the thermoelectric module. The performance of a thermoelectric module is estimated using two methods; theoretical analysis based on one-dimensional energy equations and experimental tests using heat source, heat sink and brass conduction extenders. For the thermoelectric cooling system, the temperatures in the chamber are recorded and then compared with those of lumped system analysis. The results show that the cooling capacity and COP of the thermoelectric module increases as the temperature difference between hot and cold surface decreases, and there is particular current at which cooling capacity reaches its maximum value. The experimental results for the thermoelectric cooling system are similar to those of lumped system analysis.

Analysis of the Thermoelectric Devices' Power Generation Performance for Utilizing the Waste Heat of LED Tunnel Lighting Module (LED터널등 모듈의 폐열활용을 위한 열전소자의 발전 성능 분석)

  • Jeong, Ji-Young;Her, In-Sung;Lee, Se-Il;Kim, Myeong-Ho;Yu, Young Moon
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.8
    • /
    • pp.1-6
    • /
    • 2015
  • In this paper, we propose the LED(Light-Emitting-Diode) emergency lighting in a tunnel by using the thermoelectric devices. To achieve high generated power, thermoelectric device should be have high Seebeck coefficient and small contact area. Also, we reveal that a moderate heatsink required for high generated power. From the waste heat of LED tunnel lighting module (25W), the generated power was 0.062W by thermoelectric device, and it could illuminate for 1hour after charge the battery of emergency lighting during about 101hours.

Crystallization behavior and thermoelectric properties of p-type $(Bi_{1-X}Sb_X)_2Te_3$ thin films prepared by magnerron sputtering (마그네트론 스퍼터링법으로 제조한 P형 $(Bi_{1-X}Sb_X)_2Te_3$ 박막의 결정성과 열전특성)

  • 연대중;오태성
    • Journal of the Korean Vacuum Society
    • /
    • v.9 no.4
    • /
    • pp.353-359
    • /
    • 2000
  • $(Bi_{0.15}Sb_{0.85})_2Te_3$ and $(Bi_{1-x}Sb_x)_2Te_3$ thermoelectric thin films were prepared by magnetron sputtering process, and their thermoelectric characteristics were investigated with variation of the sputtering condition and the $Sb_2Te_3$ content. The $(Bi_{0.15}Sb_{0.85})_2Te_3$ film, deposited by DC sputtering at $300^{\circ}C$ with rotating the Corning glass substrate at 10 rpm, was fully crystallized to $(Bi,Sb)_2Te_3$ phase with c-axis preferred orientation. This $(Bi_{0.15}Sb_{0.85})_2Te_3$ film exhibited the Seebeck coefficient of 185 $\mu$V/K which was higher than the values of other $(Bi_{0.15}Sb_{0.85})_2Te_3$ films fabricated with different sputtering conditions. With increasing the $Sb_2Te_3$ content, the Seebeck coefficient and electrical resistivity of p-type $(Bi_{1-x}Sb_x)_2Te_3$ (0.77$\leq$x$\leq$1.0) film were lowered. Among p-type $(Bi_{1-x}Sb_x)_2Te_3$ films, a maximum power factor of $0.79{\times}10^{-3}W/K^2-m$ was obtained at (Bi_{0.05}Sb_{0.95})_2Te_3$ composition..

  • PDF

Thermoelectric Properties in the Cu Doping Effects of the n-type Bi-Te Powders (Bi-Te계 n형 열전분말의 열전특성에 미치는 Cu 도핑의 영향)

  • Park, Min Soo;Koo, Hye Young;Ha, Gook Hyun;Park, Yong Ho
    • Journal of Powder Materials
    • /
    • v.22 no.4
    • /
    • pp.254-259
    • /
    • 2015
  • $Bi_2Te_3$ related compounds show the best thermoelectric properties at room temperature. However, n-type $Bi_2Te_{2.7}Se_{0.3}$ showed no improvement on ZT values. To improve the thermolectric propterties of n-type $Bi_2Te_{2.7}Se_{0.3}$, this research has Cu-doped n-type powder. This study focused on effects of Cu-doping method on the thermoelectric properties of n-type materials, and evaluated the comparison between the Cu chemical and mechanical doping. The synthesized powder was manufactured by the spark plasma sintering(SPS). The thermoelectric properties of the sintered body were evaluated by measuring their Seebeck coefficient, electrical resistivity, thermal conductivity, and hall coefficient. An introduction of a small amount of Cu reduced the thermal conductivity and improved the electrical properties with Seebeck coefficient. The authors provided the optimal concentration of $Cu_{0.1}Bi_{1.99}Se_{0.3}Te_{2.7}$. A figure of merit (ZT) value of 1.22 was obtained for $Cu_{0.1}Bi_{1.9}Se_{0.3}Te_{2.7}$ at 373K by Cu chemical doping, which was obviously higher than those of $Cu_{0.1}Bi_{1.9}Se_{0.3}Te_{2.7}$ at 373K by Cu mechanical doping (ZT=0.56) and Cu-free $Bi_2Se_{0.3}Te_{2.7}$ (ZT=0.51).

Fabrication of a Humidity Sensing Device using Silicon Thermopile (실리콘 Thermopile을 이용한 감습 소자의 제작)

  • 김태윤;주병권;오명환;박정호
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.31A no.4
    • /
    • pp.70-76
    • /
    • 1994
  • A humidity sensing device based on a new humidity sensing principle is designed and fabricated in this study. The silicon thermopile is consisted of 25 couples of p-type diffused layer/Al strips. The internal resistance and the Seebeck coefficient are 300kl and 537$\mu$V/K, respectively Fabricated sensors showed linear response characteristics proportional to relative humidity changes with a sensitivity of 9$\mu$V/%RH in the range from 20% to 90%.

  • PDF