Acknowledgement
This work was supported by Korea Institute for Advancement of Technology(KIAT) grant funded by the Korea Government(MOTIE) (P0002019, Human Resource Development Program for Industrial Innovation). This research was also supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2019R1A6A1A11055660).
References
- Goldsmid, H. Julian, "Introduction to thermoelectricity", Vol. 121, p 46, Springer-Verlag, Berlin Germany (2010).
- H.-S. Kim, Z. M. Gibbs, Y. Tang, H. Wang, G. J. Snyder, "Characterization of Lorenz number with Seebeck coefficient measurement", APL Mater., 3, 041506 (2015). https://doi.org/10.1063/1.4908244
- K. H. Lee, H.-S. Kim, W. H. Shin, S. Y. Kim, J.-H. Lim, S. W. Kim, S.-i. Kim, "Nanoparticles in Bi0.5Sb1.5Te3: A prerequisite defect structure to scatter the mid-wavelength phonons between Rayleigh and geometry scatterings", Acta Mater., 185, 271-278 (2020). https://doi.org/10.1016/j.actamat.2019.12.001
- M. Kim, S.-i. Kim, S. W. Kim, H.-S. Kim, K. H. Lee, "Weighted Mobility Ratio Engineering for High-Performance Bi-Te-Based Thermoelectric Materials via Suppression of Minority Carrier Transport", Adv. Mater., 33, 2005931 (2021). https://doi.org/10.1002/adma.202005931
- B. Poudel, Q. Hao, Y. Ma, Y. Lan, A. Minnich, B. Yu, X. Yan, D. Wang, A. Muto, D. Vashaee, X. Chen, J. Liu, M. S. Dresselhaus, G. Chen, Z. Ren, "High-Thermoelectric Performance of Nano structured Bismuth Antimony Telluride Bulk Alloys", Science, 320, 634 (2008). https://doi.org/10.1126/science.1156446
- J. Callaway, "Model for lattice thermal conductivity at low temperatures", Phys. Rev., 113, 1046 (1959). https://doi.org/10.1103/PhysRev.113.1046
- K. Kim, G. Kim, H. Lee, K. H. Lee, W. Lee, "Band engineering and tuning thermoelectric transport properties of p-type Bi0.52Sb1.48Te3 by Pb doping for low-temperature power generation", Scr. Mater., 145, 41 (2018). https://doi.org/10.1016/j.scriptamat.2017.10.009
- S.-i. Kim, K. H. Lee, H. A. Mun, H. S. Kim, S. W. Hwang, J. W. Roh, D. J. Yang, W. H. Shin, X. S. Li, Y. H. Lee, G. J. Snyder, S. W. Kim, "Dense dislocation arrays embedded in grain boundaries for high-performance bulk thermoelectrics" Science, 348, 109 (2015). https://doi.org/10.1126/science.aaa4166
- Y. Liu, Y. Zhang, S. Ortega, M. Ibanez, K. H. Lim, A. Grau-Carbonell, S. Marti-Sanchez, K. M. Ng, J. Arbiol, M. V. Kovalenko, D. Cadavid, A. Cabot, "Crystallographically textured nanomaterials produced from the liquid phase sintering of BixSb2-xTe3 nanocrystal building blocks", Nano Lett., 18, 2557 (2018). https://doi.org/10.1021/acs.nanolett.8b00263
- G. Yang, R. Niu, L. Sang, X. Liao, D. R. G. Mitchell, N. Ye, J. Pei, J. F. Li, X. Wang, "Ultra-High Thermoelectric Perfor?mance in Bulk BiSbTe/Amorphous Boron Composites with Nano-Defect Architectures", Adv. Energy Mater., 10, 2000757 (2020). https://doi.org/10.1002/aenm.202000757
- H.-S. Kim, K. H. Lee, J. Yoo, J. Youn, J. W. Roh, S.-i. Kim, S. W. Kim, "Effect of substitutional Pb doping on bipolar and lattice thermal conductivity in p-type Bi0.48Sb1.52Te3", Materials 10, 763 (2017). https://doi.org/10.3390/ma10070763
- H.-S. Kim, S.-i. Kim, K. H. Lee, S. W. Kim, G. J. Snyder, "Phonon scattering by dislocations at grain boundaries in polycrystalline Bi0.5Sb1.5Te3", Phys. Stat. Sol. B, 254, 1600103 (2017). https://doi.org/10.1002/pssb.201600103
- K. H. Lee, Y.-M. Kim, C. O. Park, W. H. Shin, S. W. Kim, H.-S. Kim, S.-i. Kim, "Cumulative defect structures for experimentally attainable low thermal conductivity in thermoelectric (Bi,Sb)2Te3 alloys", Mater. Today Energy, 21, 100795 (2021). https://doi.org/10.1016/j.mtener.2021.100795