DOI QR코드

DOI QR Code

Formulaic Understanding to Make a Strategy of Thermal Conductivity Reduction for Enhancing the Performance of Thermoelectric Materials

열전도도 저감 기반의 열전소재 성능 증대 전략 수립을 위한 수식적 이해

  • Pi, Ji-Hee (Department of Materials Science and Engineering, Yonsei University) ;
  • Choi, Myung Sik (School of Energy Materials and Chemical Engineering, Kyungpook National University) ;
  • Lee, Kyu Hyoung (Department of Materials Science and Engineering, Yonsei University)
  • 피지희 (연세대학교 신소재공학과) ;
  • 최명식 (경북대학교 에너지 신소재.화학공학부) ;
  • 이규형 (연세대학교 신소재공학과)
  • Received : 2022.12.23
  • Accepted : 2022.12.30
  • Published : 2022.12.30

Abstract

Thermoelectric materials can directly convert a temperature gradient to an electrical energy and vice-versa, and their performance is determined by the electrical conductivity, Seebeck coefficient, and thermal conductivity. However, it is difficult to establish an effective strategy for enhancing performance since electrical conductivity, Seebeck coefficient, and thermal conductivity are strongly dependent on the composition, crystal structure, and electronic structure of the material, and show a correlation with each other. Herein, based on the understanding of the formulas related to the performance of thermoelectric materials, we provide a methodology to establish feasible defect engineering strategies of thermal conductivity reduction for improving the performance of thermoelectric materials in connection with the experimental results.

고체상태에서 열에너지과 전기에너지를 직접적이고 가역적으로 변환할 수 있는 열전소재는 전기전도특성인 전기전도도 및 제벡계수와 열전도특성인 열전도도에 의해 그 성능이 결정된다. 하지만 전기전도도, 제벡계수, 열전도도는 소재의 조성, 결정구조 및 전자구조에 의해 결정되며, 서로 상관관계를 나타내기 때문에 성능 증대를 위한 효과적인 전략수립에 어려움이 있다. 본 논문에서는 열전소재의 성능과 관련한 수식에 대한 이해를 바탕으로 실험 결과와 연계하여 열전도도 저감 관점에서 효과적인 결함제어 기반 열전소재 성능 증대 전략을 수립할 수 있는 방법론을 제공하고자 한다.

Keywords

Acknowledgement

This work was supported by Korea Institute for Advancement of Technology(KIAT) grant funded by the Korea Government(MOTIE) (P0002019, Human Resource Development Program for Industrial Innovation). This research was also supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2019R1A6A1A11055660).

References

  1. Goldsmid, H. Julian, "Introduction to thermoelectricity", Vol. 121, p 46, Springer-Verlag, Berlin Germany (2010).
  2. H.-S. Kim, Z. M. Gibbs, Y. Tang, H. Wang, G. J. Snyder, "Characterization of Lorenz number with Seebeck coefficient measurement", APL Mater., 3, 041506 (2015). https://doi.org/10.1063/1.4908244
  3. K. H. Lee, H.-S. Kim, W. H. Shin, S. Y. Kim, J.-H. Lim, S. W. Kim, S.-i. Kim, "Nanoparticles in Bi0.5Sb1.5Te3: A prerequisite defect structure to scatter the mid-wavelength phonons between Rayleigh and geometry scatterings", Acta Mater., 185, 271-278 (2020). https://doi.org/10.1016/j.actamat.2019.12.001
  4. M. Kim, S.-i. Kim, S. W. Kim, H.-S. Kim, K. H. Lee, "Weighted Mobility Ratio Engineering for High-Performance Bi-Te-Based Thermoelectric Materials via Suppression of Minority Carrier Transport", Adv. Mater., 33, 2005931 (2021). https://doi.org/10.1002/adma.202005931
  5. B. Poudel, Q. Hao, Y. Ma, Y. Lan, A. Minnich, B. Yu, X. Yan, D. Wang, A. Muto, D. Vashaee, X. Chen, J. Liu, M. S. Dresselhaus, G. Chen, Z. Ren, "High-Thermoelectric Performance of Nano structured Bismuth Antimony Telluride Bulk Alloys", Science, 320, 634 (2008). https://doi.org/10.1126/science.1156446
  6. J. Callaway, "Model for lattice thermal conductivity at low temperatures", Phys. Rev., 113, 1046 (1959). https://doi.org/10.1103/PhysRev.113.1046
  7. K. Kim, G. Kim, H. Lee, K. H. Lee, W. Lee, "Band engineering and tuning thermoelectric transport properties of p-type Bi0.52Sb1.48Te3 by Pb doping for low-temperature power generation", Scr. Mater., 145, 41 (2018). https://doi.org/10.1016/j.scriptamat.2017.10.009
  8. S.-i. Kim, K. H. Lee, H. A. Mun, H. S. Kim, S. W. Hwang, J. W. Roh, D. J. Yang, W. H. Shin, X. S. Li, Y. H. Lee, G. J. Snyder, S. W. Kim, "Dense dislocation arrays embedded in grain boundaries for high-performance bulk thermoelectrics" Science, 348, 109 (2015). https://doi.org/10.1126/science.aaa4166
  9. Y. Liu, Y. Zhang, S. Ortega, M. Ibanez, K. H. Lim, A. Grau-Carbonell, S. Marti-Sanchez, K. M. Ng, J. Arbiol, M. V. Kovalenko, D. Cadavid, A. Cabot, "Crystallographically textured nanomaterials produced from the liquid phase sintering of BixSb2-xTe3 nanocrystal building blocks", Nano Lett., 18, 2557 (2018). https://doi.org/10.1021/acs.nanolett.8b00263
  10. G. Yang, R. Niu, L. Sang, X. Liao, D. R. G. Mitchell, N. Ye, J. Pei, J. F. Li, X. Wang, "Ultra-High Thermoelectric Perfor?mance in Bulk BiSbTe/Amorphous Boron Composites with Nano-Defect Architectures", Adv. Energy Mater., 10, 2000757 (2020). https://doi.org/10.1002/aenm.202000757
  11. H.-S. Kim, K. H. Lee, J. Yoo, J. Youn, J. W. Roh, S.-i. Kim, S. W. Kim, "Effect of substitutional Pb doping on bipolar and lattice thermal conductivity in p-type Bi0.48Sb1.52Te3", Materials 10, 763 (2017). https://doi.org/10.3390/ma10070763
  12. H.-S. Kim, S.-i. Kim, K. H. Lee, S. W. Kim, G. J. Snyder, "Phonon scattering by dislocations at grain boundaries in polycrystalline Bi0.5Sb1.5Te3", Phys. Stat. Sol. B, 254, 1600103 (2017). https://doi.org/10.1002/pssb.201600103
  13. K. H. Lee, Y.-M. Kim, C. O. Park, W. H. Shin, S. W. Kim, H.-S. Kim, S.-i. Kim, "Cumulative defect structures for experimentally attainable low thermal conductivity in thermoelectric (Bi,Sb)2Te3 alloys", Mater. Today Energy, 21, 100795 (2021). https://doi.org/10.1016/j.mtener.2021.100795