• Title/Summary/Keyword: Sedimentation of particles

Search Result 151, Processing Time 0.027 seconds

A study of Sedimentation Processes in Estuary of the Geum river before and after Saemangeum reclamation (새만금 간척전·후 금강 하구의 퇴적 과정에 관한 연구)

  • Shin, Moon Seup;Bae, Ki Seong;Kim, Nam Hyeong
    • Journal of the Korean GEO-environmental Society
    • /
    • v.2 no.3
    • /
    • pp.5-15
    • /
    • 2001
  • The purpose of this study is to find sedimentation patterns variation before and after the Saemangeum reclamation. Water circulations before and after the Saemangeum reclamation are calculated diagnostically and prognostically from the water temperature, salinity data, wind data and tidal residual current. Three dimensional movements of injected particles due to currents, turbulence and sinking velocity are tracked by the Euler-lagrange method. The dispersion range of soil grain for one and three day after releasing in the Geum river indicates that the soil grain was sedimented coastal area of Janghang and outer harbor of Kunsan. The soil grain moves a quite distance from the release point when size of soil grain is a small. These results indicate that size of soil grain and residual current is greatly influenced on the dispersion range of soil grain.

  • PDF

Reduction of perchlorate in aqueous solution using zero valence iron stabilized with alginate bead (알지네이트 비드를 이용하여 안정화한 0가 철의 수용액 상에서의 과염소산 이온의 환원 분해 특성)

  • Joo, Tae-Kyeong;Lee, Jong-Chol;Paeng, Ki-Jung
    • Analytical Science and Technology
    • /
    • v.23 no.6
    • /
    • pp.560-565
    • /
    • 2010
  • Perchlorate ion ($ClO_4^-$) has been widely used as oxidizing agent in military weapon system such as rocket and missile fuel propellant. So it has been challenging to remove the pollutant of perchlorate ion. nanoscale zero valence iron (nZVI) particles are widely employing reduction catalyst for decomposition of perchlorate ion. nZVI particles has increasingly been utilized in groundwater purification and waste water treatment. But it have strong tendency of aggregation, rapid sedimentation and limited mobility. In this study, we focused on reduction of perchlorate ion using nZVI particles immobilized in alginate polymer bead for stabilization. The stabilized nZVI particles displayed much greater surface area, and much faster reaction rates of reduction of perchlorate ion. In this study, an efficient way to immobilize nZVI particles in a support material, alginate bead, was developed by using $Ca^{2+}$ as the cross-linking cations. The efficiency and reusability of the immobilized Fe-alginate beads on the reduction of perchlorate was tested at various temperature conditions.

Study on the size-based separation of nano to micron particles in natural water and soil using flow and sedimentaion Field-flow fractionation (흐름 및 침강 장-흐름 분획법에 의한 자연수 및 토양 중 나노 크기로부터 마이크론 입자들의 크기별 분리에 관한 연구)

  • Eum, Chul Hun;Kang, Dong Young;Lee, Tae Woo;Lee, Seungho
    • Analytical Science and Technology
    • /
    • v.22 no.1
    • /
    • pp.75-81
    • /
    • 2009
  • A flow and sedimentation field-flow fractionation method has been used to characterize colloidal particles in environmental samples. The opposed flow sample concentration (OFSC) method was employed. The OFSC procedure was optimized for the analysis of particles in ground water with respect to various experimental parameters including sample introduction time, flow rates, etc. The effectiveness in low concentration and characterization of the OFSC-FlFFF was demonstrated with GW-1 and GW-2 ground water samples. Ground water of upto 100 mL has been successfully loaded, concentrated, and characterized by OFSC-FlFFF. The OFSC technique allow the application of FlFFF possible for the separation and characterization of colloidal particles in very low concentrations. The results show FFF provides a simplified alternative to existing off-line concentration procedures, and shows a high potential for the applications to the analysis of dilute colloidal particles in the environmental samples.

[Retraction]Size measurement and characterization of ceria nanoparticles using asymmetrical flow field-flow fractionation (AsFlFFF)

  • Kim, Kihyun;Choi, Seong-Ho;Lee, Seungho;Kim, Woonjung
    • Analytical Science and Technology
    • /
    • v.32 no.5
    • /
    • pp.173-184
    • /
    • 2019
  • As the size of semiconductors becomes smaller, it is necessary to perform high precision polishing of nanoscale. Ceria, which is generally used as an abrasive, is widely used because of its uniform quality, but its stability is not high because it has a high molecular weight and causes agglomeration and rapid precipitation. Such agglomeration and precipitation causes scratches in the polishing process. Therefore, it is important to accurately analyze the size distribution of ceria particles. In this study, a study was conducted to select dispersants useful for preventing coagulation and sedimentation of ceria. First, a dispersant was synthesized and a ceria slurry was prepared. The defoamer selection experiment was performed in order to remove the air bubbles which may occur in the production of ceria slurry. Dynamic light scattering (DLS) and asymmetrical flow field-flow fractionation (AsFlFFF) were used to determine the size distribution of ceria particles in the slurry. AsFlFFF is a technique for separating nanoparticles based on sequential elution of samples as in chromatography, and is a useful technique for determining the particle size distribution of nanoparticle samples. AsFlFFF was able to confirm the presence of a little quantities of large particles in the vicinity of 300 nm, which DLS can not detect, besides the main distribution in the range of 60-80 nm. AsFlFFF showed better accuracy and precision than DLS for particle size analysis of a little quantities of large particles such as ceria slurry treated in this study.

A Study on the Particle Separation Technology of Contaminated Dredged Sediments (오염 준설퇴적토의 입자분리기술에 관한 연구)

  • Park, Jeong Jun;Hwnag, Soon Gab;Shin, Eun Chul
    • Journal of the Korean Geosynthetics Society
    • /
    • v.12 no.3
    • /
    • pp.87-94
    • /
    • 2013
  • As sediment contamination problems have recently been raised in Korea, the need for technologies to remove contaminants in sediments has increased. Contaminated sediments in Korea has been annually dredged and treated using processes of coagulation/flocculation, sedimentation on barges, dewatered and dried at prepared site, and then disposed at a landfill site, which is very costly, and only a limited landfill space available in Korea. Contaminants in media containing a high percentage of silt and clay sized particles, typically, are strongly adsorbed on the particles and difficult to remove. Particle separation processes that separate the fine clay and silt particles from the coarser sand and gravel and concentrate the contaminants into a smaller volume of sediment that can be further treated of disposed of, are very effective in the post step processes. In this study are to test the feasibility of treating dredged sediments using a hydrocyclone process, and to estimate design parameters for a pilot scale test. A hydrocyclone was operated to separate larger particles from the sediments. It was found that the particle separation was greatly affected by the solid contents and inlet pressure in the hydrocyclone.

Adsorption Stabilization of $TiC_{2}$ Particles in Water Soluble Block Copolymers (수용성 블록공중합물에서 산화티탄 분말의 흡착 안정화)

  • Kwan, Soun-Il;Jeong, Hwan-Kyeong;Choi, Seung-Ok;Nam, Ki-Dae
    • Journal of the Korean Applied Science and Technology
    • /
    • v.18 no.2
    • /
    • pp.118-126
    • /
    • 2001
  • Micelle formation and adsorption at the $Ti0_{2}$ interface of a series of polystyrene-polythylene oxide(PS-PEO) block copolymer in aqueous solution was studied using fluorescence probing and small-angle X-ray methods. Further, the stability of aqueous $Ti0_{2}$ dispersion in the presence of copolymer was investigated by microelectrophoresis, optical density and sedimentation measurements. The dissolution of pyrene as fluorescent probe in aqueous surfactant solution leads to a slow decrease of the $I_{1}/I_{3}$ ratio, as the copolymer concentration increase; $I_{1}$ and $I_{3}$ are respectively the intensities of the first and third vibrionic peaks in the pyrene fluorescence emission. The behaviour was due to the characteristics of the copolymers and/or to the copolymer association efficiency in water. Moreover, the adsorption at the plateau level increases with decreasing PEO until chain length. The zeta potential of $TiO_{2}$ particles decreases with increasing copolymer concentration and reaches a plateau value. Finally, stabilization using block copolymers was more effective with samples having higher weight fractions of PS block.

A Study on the Flow Characteristics of Vertical Impeller to Improve Flocculation Efficiency (응집효율 향상을 위한 수직형 교반기의 유동특성 연구)

  • Kim, Jin-Hoon;Park, Jong-Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.8 no.3 s.30
    • /
    • pp.33-41
    • /
    • 2005
  • The optimum condition is defined as one that best suits the purpose of flocculation; the number of small particles should decrease, while that of large particles should increase. The object of this research was to develop a new impeller and substitute for conventional flocculators. The flow characteristics of turbines and hydrofoil type flocculators in turbulent fluids were observed using a standard $k-{\epsilon}$ Model and a computational fluid dynamics (CFD) simulation program-FLUENT. The experiments were performed to compare PBT(Pitched Blade Turbine) flocculator with twisted hydrofoil type flocculators for velocity distribution, and floe formation at conventional water treatment plants in Korea. As a result of the CED solution, twisted hydrofoil types are similar to hydrofoil flocculators for flow characteristics without regard to the twisted angle, On the other hand, it was established that turbine flocculators are greater than hydrofoil flocculators with flow unevenness and dead zone formation. Twisted hydrofoil type-II (Angle $15{\sim}20^{\circ}$) is the most proper impeller for water flocculation from this point of view with a decreasing the dead zone, maintaining of the equivalent energy distribution and a drawing up of the sedimentation substance from the bottom of the flocculation basin.

A Study on the Flow Characteristics of Vertical Impeller to Improve Flocculation Efficiency (응집효율 향상을 위한 수직형 교반기의 유동특성 연구)

  • Kim, Jin-Hoon;Park, Jong-Ho
    • 유체기계공업학회:학술대회논문집
    • /
    • 2004.12a
    • /
    • pp.267-274
    • /
    • 2004
  • The optimum condition is defined as one that best suits the purpose of flocculation; the number of small particles should decrease, while that of large particles should increase. The object of this research was to develop a new impeller and substitute for conventional flocculators. The flow characteristics of turbines and hydrofoil type flocculators in turbulent fluids were observed using a standard k-$\epsilon$ Model and a computational fluid dynamics (CFD) simulation program- FLUENT The experiments were performed to compare PBT(Pitched Blade Turbine) flocculator with twisted hydrofoil type flocculators for velocity distribution, and floc formation at conventional water treatment plants in Korea. As a result of the CFD solution, twisted hydrofoil types are similar to hydrofoil flocculators for flow characteristics without regard to the twisted angle, On the other hand, it was established that turbine flocculators are greater than hydrofoil flocculators with flow unevenness and dead zone formation. Twisted hydrofoil type- II (Angle $15{\~}20^{\circ}$) is the most proper impeller for water flocculation from this point of view with a decreasing the dead zone, maintaining of the equivalent energy distribution and a drawing up of the sedimentation substance from the bottom of the flocculation basin.

  • PDF

Preparation of Composites using Carbonyl Iron with Ferromagnetic Properties for Effective Phosphorus Removal in Water (효과적인 수중의 인제거를 위해 강자성력을 가진 카보닐 철을 활용한 복합제 제조)

  • Kim, Jong Kyu
    • Journal of Korean Society of Water Science and Technology
    • /
    • v.26 no.6
    • /
    • pp.117-124
    • /
    • 2018
  • For the effective removal of phosphorus in water, a novel type of composite was prepared by combining Poly Alumiun Chloride, widely used in sewage/wastewater treatment plants, and Humic Acid particles, which are known to have phosphorus removal ability, with CI. The surface of the ferromagnetic CI particles was oxidized and activated, and then PAC and HA were synthesized to finally produce CIPAC and CIHA. CIPAC and CIHA prepared by this study showed similar results to the phosphorus removal efficiencies of PAC and HA coagulants. The novel composite has a larger weight than the conventional coagulant, and the coagulated sludge precipitates rapidly. The sludge could be easily separated in a short time if the external magnetic field was given by the ferromagnetic force of CIPAC and CIHA prepared with CI as support. Therefore, it can be concluded that if phosphorus removal is carried out using CIPAC and CIHA prepared through this study with external magnetic field, the sedimentation rate will be much faster than that of conventional coagulant. Thus it is possible to obtain a high economic benefit in the sludge recovery part.

Characteristics of the Segregation Sedimentation for Dredged Soil Depending on Fines Content (세립분 함량에 따른 준설토의 분리 퇴적 특성)

  • Park, Minchul;Lee, Jongkyung;Shin, Hyohee;Lee, Song
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.6
    • /
    • pp.25-34
    • /
    • 2011
  • Dredged and reclaimed ground in progress at the West Coast has a high content of coarse particles. There will be different behaviors depending on the location of outlet and engineering properties of soil when its ground is dredged by a pump. Therefore, the experiments were conducted that were manufactured about the chamber equipment of length 2,650mm, width 770mm, height 735mm, experimented step filling method and water content about 300%, 500% and 700% respectively with SM and ML samples in order to realize segregating sediment characteristics of dredged ground with changing much fine. With results of analysis, ML sample by higher initial water content was reached to the period of complete sedimentation and coefficient of sedimentation consolidation increased with increases of diffusion distance. SM samples showed behavior of coarse soil with diffusion distance 120cm, diffusion distance of more than 120cm showed a similar tendency with ML sample under the influence of fines. In ML sample, it could be also found that lower depth and the more increasing diffusion distance increase in percentage of sieve #200 but water content decreases. In SM sample, it could be also found that coarse soil was piled at near the diffusion distance zone but fine soil was piled at the far diffusion distance zone and prominent difference showed between percentage of sieve #200 and water content(%) by boundary point 120cm~160cm of both samples. Also, shear strength was expressed ML-maximum 2.97kPa, SM-maximum 10.2kPa with diffusion distance.