• Title/Summary/Keyword: Sediment particle size

Search Result 172, Processing Time 0.03 seconds

Assessment of Metal Pollution of Road-Deposited Sediments and Marine Sediments Around Gwangyang Bay, Korea (광양만 내 도로축적퇴적물 및 해양퇴적물의 금속 오염 평가)

  • JEONG, HYERYEONG;CHOI, JIN YOUNG;RA, KONGTAE
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.25 no.2
    • /
    • pp.42-53
    • /
    • 2020
  • In this study, heavy metal in road-deposited sediments (RDS) and marine sediment around Gwangyang Bay area have been investigated to assess the pollution status of metals and to understand the environmental impact of RDS as a potential source of metal pollution. Zn concentration for <63 ㎛ size fraction was the highest (2,982 mg/kg), followed by Cr, Ni, Pb, Cu, As, Cd, and Hg. Metal concentrations in RDS increased with decreasing particle size and relatively higher concentrations were observed around the metal waste and recycling facilities. For particle size in RDS smaller than 125 ㎛, EF values indicated that Zn was very high enrichment and Cr, Cd, Pb were significant enrichment. The concentrations of metals in marine sediments were mostly below the TEL value of sediment quality guidelines of Korea. However, the Zn concentrations has increased by 30~40% compared to 2010 year. The amounts of Zn, Cd and Pb in less than 125 ㎛ fraction where heavy metals can be easily transported by stormwater runoff accounted for 54% of the total RDS. The study area was greatly affected by Zn pollution due to corrosion of Zn plating materials by traffic activity as well as artificial activities related to the container logistics at Gwangyang container terminal. The fine particles of RDS are not only easily resuspended by wind and vehicle movement, but are also transported to the surrounding environments by runoff. Therefore, further research is needed on the adverse effects on the environment and ecosystem.

Monitoring of Moisture Content and Sediment Fineness as Predictors of Shoal Breaching in an Estuary

  • Lee, Seulki;Park, Sungjae;Lee, Chang-Wook
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.36 no.1
    • /
    • pp.25-32
    • /
    • 2018
  • Namdae-cheon in Gangwon-do Province, Korea, is a valuable well-preserved lagoon. The estuary of Namdae-cheon Stream is closed because of the surrounding natural sand shoal. Thus, during the dry season, river water cannot easily flow to the ocean and therefore stagnates. River water congestion causes environmental deterioration of estuaries, often by eutrophication. In this study, we examined wall disintegration in the estuary area and used it to determine appropriate measures for the conservation of estuary water quality in the future. A total of 24 sites were selected, with 13 sites on the west side and 11 sites on the east side of the estuary study area. Samples were collected and analyzed for particle size and moisture content both vertically and horizontally. Sedimentary deposition rate was measured, and subsidence analysis was performed. Particle size, water content, sedimentary deposition, and subsidence analyses indicated that flow shifted to the west during the study period. In conjunction with other variables that may affect changes in flow, these parameters can be used in future research to predict shoal breaches and associated changes in water flow direction.

Experimental Estimation of Shear Stresses at Pier-Front (교각전면부 하상재료의 입도분포에 따른 전단응력 산정에 관한 실험적 연구)

  • Park, Yoon Sung;Kang, Jun Ku;Yeo, Woon Kwang
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2004.05b
    • /
    • pp.429-433
    • /
    • 2004
  • According to researchers, the influential factors of scouring are generally divided into three factors: the flow conditions, the type and position of structures, and the characteristics of bed materials. In addition, scouring is affected by the 3-dimensional turbulent boundaries, the unsteady flow, the movement of sediment in the scour-hole area, the approach flow velocity and depth, the width of bridge foundation/pier, and the particle size of bed materials. However, it is difficult to estimate the scour depth near bridge piers when all conditions are factored in at once. Therefore, for reasonably accurate estimates of scour depth, it is essential to consider sufficiently the flow force and resisting force for scour. That is, to determine the shear stress concerning the bed material distribution is needed. In this study, the experiments were performed under the condition of a steady state of flow. As a result, scouring occurred at velocity ratios of 0.476,$(V/V_c=0.476)$, and the scour depth was increased linearly as the velocity ratio increased. in addition, the average values of shear stress ratio at zero scouring depth in both rectangular and circular piers were approximately 7$(\tau_c/\tau_{approach})$ and in the case for same size bed particle material. The results of this study can be used for the fundamental material for estimating the scour depth of bed materials.

  • PDF

Hydrogeological Characteristics of a Riverine Wetland in the Nakdong River Delta, Korea

  • Jeon, Hang-Tak;Cha, Eun-Ji;Lim, Woo-Ri;Yoon, Sul-Min;Hamm, Se-Yeong
    • Journal of the Korean earth science society
    • /
    • v.42 no.4
    • /
    • pp.425-444
    • /
    • 2021
  • Investigating the physical and chemical properties of riverine wetlands is necessary to understand their distribution characteristics and depositional environment. This study investigated the physical (particle size, color, and type) and chemical properties (organic, inorganic, and moisture contents) of sediments in Samrak wetland, located in the Nakdong River estuary area in Busan, South Korea. The particle size analysis indicated that the hydraulic conductivity values for the coarse grain and the mixture of coarse and fine grains ranged from 2.03 to 3.49×10-1 cm s-1 and 7.18×10-3 to 1.24×10-7 cm s-1, respectively. In-situ water quality and laboratory-based chemical analyses and radon-222 measurement were performed on groundwater and surface water in the wetland and water from the nearby Nakdong River. The physical and chemical properties of Samrak wetland was characterized by the sediments in the vertical and lateral direction. The concentrations of chemical components in the wetland groundwater were distinctly higher than those in the Nakdong River water though the wetland groundwater and Nakdong River water equally belonged to the Ca-HCO3 type.

Characterization of Clastic and Organic Sediments Near Dokdo, Korea (독도 인근 해저퇴적물과 유기 퇴적물 분포 특성)

  • Jun, Chang Pyo;Kim, Chang Hwan;Lee, Seong-Joo
    • Journal of the Mineralogical Society of Korea
    • /
    • v.26 no.2
    • /
    • pp.65-80
    • /
    • 2013
  • Sediment transport mechanism and distribution of organic sediments are elucidated by the study of particle size, mineralogy, organic matters and microfossils of the surface samples collected from seafloor adjacent Dokdo island. Shallow marine sediments are dominated by coarse- grained sediments including gravel and sand, and their sedimentation has mainly been controlled by traction. While the samples collected from oceanic zone are characterized by high contents of fine- grained sediments such as silt and mud in bulk sediments, and the changes of mineral compositions including clay minerals and feldspar, and the fine sediments have been deposited mainly by suspension. The change of organic sedimentary communities is detected between neritic and oceanic zone. Although marine organic matter is predominant in neritic zone, terrestrial organic matter is monopolized according to increasing water depth. This trend is associated with grain size of sediments. The results also suggest that high pollen concentrations in whole organic matters may played an important role in excessive organic carbon in sediment.

Clustering of sediment characteristics in South Korean rivers and its expanded application strategy to H-ADCP based suspended sediment concentration monitoring technique (한국 하천의 지역별 유사특성의 군집화와 H-ADCP 기반 부유사 농도 관측 기법에의 활용 방안)

  • Noh, Hyoseob;Son, GeunSoo;Kim, Dongsu;Park, Yong Sung
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.1
    • /
    • pp.43-57
    • /
    • 2022
  • Advances in measurement techniques have reduced measurement costs and enhanced safety resulting in less uncertainty. For example, an acoustic doppler current profiler (ADCP) based suspended sediment concentration (SSC) measurement technique is being accepted as an alternative to the conventional data collection method. In Korean rivers, horizontal ADCPs (H-ADCPs) are mounted on the automatic discharge monitoring stations, where SSC can be measured using the backscatter of ADCPs. However, automatic discharge monitoring stations and sediment monitoring stations do not always coincide which hinders the application of the new techniques that are not feasible to some stations. This work presents and analyzes H-ADCP-SSC models for 9 discharge monitoring stations in Korean rivers. In application of the Gaussian mixture model (GMM) to sediment-related variables (catchment area, particle size distributions of suspended sediment and bed material, water discharge-sediment discharge curves) from 44 sediment monitoring stations, it is revealed that those characteristics can distinguish sediment monitoring stations regionally. Linking the two results, we propose a protocol determining the H-ADCP-SSC model where no H-ADCP-SSC model is available.

Sediment Characteristics of the Beach and Subtidal Zone in Shindu Marine Protected Area (신두 해양생태계보호구역 해빈과 조하대의 퇴적물 특성)

  • Shin, Young Ho;Seo, Jong Cheol
    • Journal of the Korean Geographical Society
    • /
    • v.49 no.6
    • /
    • pp.812-832
    • /
    • 2014
  • We analyzed physical and chemical properties of sediments from 20 subtidal points and 9 beach points to define sedimentary environment between summer and winter of Shindu Marine Protected Area. Means of particle size in summer were generally finer than winter's. There was distinctively spatial pattern that particle sizes became increasingly fine as west direction and apart from beach in summer, but this pattern was not shown in winter. Coarse sediments were prevailed in winter. To explain these patterns, we propose possible two causes which are spatially different water depth condition related with seasonal wave climate or fine sediment input from an estuary located in south of this area during summer rainy season. Contents of exchangeable cations of sediment in summer were shown $Na^+$>$Ca^{2+}$>$Mg^{2+}$>$K^+$ in order, but those of winter were shown $Na^+$>$Mg^{2+}{\fallingdotseq}Ca^{2+}$>$K^+$. Contents of $Na^+$, $Mg^{2+}$, and $K^+$ were related with contents of fine sediment and showed high correlation in each other. These relations were not shown between $Ca^{2+}$ and others. Our results show that there are spatio-temporal unique sedimentary environments between subtidal zone, beach, and dune near Shindu Marine Protected Area. Therefore, we should consider these spatio-temporal patterns for environmentally sound management of Shindu coastal system.

  • PDF

Investigation of the Effect of Weirs Construction in the Han River on the Characteristics of Sediments (보 설치가 퇴적물 특성에 미치는 영향에 관한 연구)

  • Kang, Min Kyoung;Choi, In Young;Park, Ji Hyoung;Choi, Jung Hyun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.9
    • /
    • pp.597-603
    • /
    • 2012
  • To investigate the effects of weir construction on sediment characteristics of river bed, we conducted sediments sampling on the 9 locations near the weir, Kangchun, Yuju and Ipo in Namhan-River. Physical and chemical characteristics of sediments were analyzed by measuring particle size distribution, water content, Ignition loss, COD (Chemical Oxyzen Demand), TOC (Total Organic Carbon), TP (Total Phosphorus), SRP (Soluble Reactive Phosphorus) and TN (Total Nitrogen). Particle classification of all three weir sediments showed sandy loam that was caused by the river bed dredging. Due to the presence of weir, Ignition loss, COD, TOC, TP, SRP and TN showed similar trend such as the concentrations of upward weir had higher than those of downward weir. For the case of SRP concentration and C/N ratio, however, there is not much difference in the sediment characteristics compared to the those of sediments before weir construction. Therefore, It can be predicted that there are little effects of weir construction on sediment characteristics. However, weir construction could influence water quality of the river by controlling the transport and the accumulation of suspended materials from rainfall. Therefore, more intensive monitoring is required to examine the magnitude and patterns of sediment accumulation which could influence overlying water quality.

Effects of Turbid Water on Fish Ecology in Streams and Dam Reservoirs

  • Seo, Jin-Won;Lee, Jong-Eun
    • Korean Journal of Ecology and Environment
    • /
    • v.41 no.4
    • /
    • pp.431-440
    • /
    • 2008
  • Turbid water or suspended sediment is associated with negative effects on aquatic organisms; fish, aquatic invertebrate, and periphyton. Effects of turbid water on fish differ depending on their developmental stage and a level of turbidity. Low turbid water may cause feeding and predation rates, reaction distance, and avoidance in fish, and it could make fish to die under high turbidity and long period. Therefore, it is very important to find out how turbid water or suspended sediment can affect fish in domestic watersheds. The objectives of this study were 1) to introduce international case studies and their standards to deal with suspended sediment, 2) to determine acute toxicity in 4 major freshwater fishes, and 3) to determine in relation to adverse effect of macroinvertebrates and fish. Impacts of turbid water on fish can be categorized into direct and indirect effects, and some factors such as duration and frequency of exposure, toxicity, temperature, life stage of fish, size of particle, time of occurrence, availability of and access to refugia, etc, play important role to decide magnitude of effect. A review of turbidity standard in USA, Canada, and Europe indicated that each standard varied with natural condition, and Alaska allowed liberal increase of turbidity over natural conditions in streams. Even though acute toxicity with four different species did not show any fatal effect, it should be considered to conduct a chronic test (long-term) for more detailed assessment. Compared to the control, dominance index of macroinvertebrates was greater in the turbid site, whereas biotic index, species diversity index, species richness index, and ecological score were smaller in the turbid site. According to histopathological analysis with gills of macroinvertebrate and fishes, morphological and physiological modification of gills due to suspended sediments can cause disturbance of respiration, excretion and secretion. In conclusion, in order to maintain good and healthy aquatic ecosystem, it is the best to minimize or prevent impact by occurrence of turbid water in stream and reservoir. We must make every effort to maintain and manage healthy aquatic ecosystem with additional investigation using various assessment tools and periodic biomonitoring of fish.

Evaluation of Dispersion Characteristics for Liquefied Red Mud by Viscosity and Sediment Index (점도 및 침전지수에 의한 액상화 레드머드의 분산 특성평가)

  • Kang, Suk-Pyo;Kang, Hye-Ju
    • Journal of the Korea Institute of Building Construction
    • /
    • v.17 no.6
    • /
    • pp.517-525
    • /
    • 2017
  • Red mud is an industrial by-product produced during the manufacturing aluminum hydroxide ($Al(OH)_3$) and aluminum oxide($Al_2O_3$) from Bauxite ores. In Korea, approximately 2 tons of red mud in a sludge form with 50% moisture content is produced when 1ton of $Al_2O_3$ is produced through the Bayer process. In the paper, dispersion characteristics of liquefied red mud that does not require heating and grinding process for recycling were investigated through viscosity and sediment index. The results showed that the sediment index of liquefied red mud increased but viscosity of that decreased with a higher W/R ratio. Also we proposed the range of initial viscosity from 2000cP to 8000cP and target sedimentation index below 20% at elapsed time 180days for stable dispersion of liquefied red mud.