• Title/Summary/Keyword: Security metric

Search Result 88, Processing Time 0.025 seconds

Metric based Performance Measurement of Software Development Methodologies from Traditional to DevOps Automation Culture

  • Poonam Narang;Pooja Mittal
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.6
    • /
    • pp.107-114
    • /
    • 2023
  • Successful implementations of DevOps practices significantly improvise software efficiency, collaboration and security. Most of the organizations are adopting DevOps for faster and quality software delivery. DevOps brings development and operation teams together to overcome all kind of communication gaps responsible for software failures. It relies on different sets of alternative tools to automate the tasks of continuous integration, testing, delivery, deployment and monitoring. Although DevOps is followed for being very reliable and responsible environment for quality software delivery yet it lacks many quantifiable aspects to prove it on the top of other traditional and agile development methods. This research evaluates quantitative performance of DevOps and traditional/ agile development methods based on software metrics. This research includes three sample projects or code repositories to quantify the results and for DevOps integrated selective tool chain; current research considers our earlier proposed and implemented DevOps hybrid model of integrated automation tools. For result discussion and validation, tabular and graphical comparisons have also been included to retrieve best performer model. This comparative and evaluative research will be of much advantage to our young researchers/ students to get well versed with automotive environment of DevOps, latest emerging buzzword of development industries.

The Case Study for Path Selection Verification of IGP Routing Protocol (IGP 라우팅 프로토콜의 경로선택 검증을 위한 구현 사례)

  • Kim, No-Whan
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.9
    • /
    • pp.197-204
    • /
    • 2014
  • RIP, EIGRP, OSPF are the interior gateway protocol for sending and receiving routing information among routers in AS(Autonomous System). Various path selection methods using the metric in regard to them have been studied recently but there are few examples that the contents learners understand theoretically are verified by the practice. The Best Path is determined by calculating the Cost value based on the relevant topology of each routing protocol. After implementing the virtual network, it is certain that the results tracking and verifying the relevant path selection of each routing protocol are consistent with the Best Path. If methods suggested in this paper are applied properly, the relevant path selection process of routing protocol can be understood systematically. And it is expected that the outstanding results of learning will be able to be achieved.

Probabilistic Performance Evaluation Technique for Mixed-criticality Scheduling with Task-level Criticality-mode (작업별 중요도 모드를 적용한 혼합 중요도 스케줄링에서 확률적 성능 평가 기법)

  • Lee, Jaewoo
    • The Journal of Society for e-Business Studies
    • /
    • v.23 no.3
    • /
    • pp.1-12
    • /
    • 2018
  • Mixed-criticality systems consist of components with different criticality. Recently, components are categorized depending on criticality by ISO 26262 standard and DO-178B standard in automotive and avionic domain. Existing mixed-criticality system research achieved efficient and safe scheduling through system-level criticality mode. The drawback of these approaches is performance degradation of low-criticality tasks on high-criticality mode. Task-level criticality mode is one method to address the problem and improve the performance of low-critical tasks. In this paper, we propose probabilistic performance metric for the approach. In simulation results with probabilistic performance metric, we showed that our approach has better performance than the existing approaches.

A 2D / 3D Map Modeling of Indoor Environment (실내환경에서의 2 차원/ 3 차원 Map Modeling 제작기법)

  • Jo, Sang-Woo;Park, Jin-Woo;Kwon, Yong-Moo;Ahn, Sang-Chul
    • 한국HCI학회:학술대회논문집
    • /
    • 2006.02a
    • /
    • pp.355-361
    • /
    • 2006
  • In large scale environments like airport, museum, large warehouse and department store, autonomous mobile robots will play an important role in security and surveillance tasks. Robotic security guards will give the surveyed information of large scale environments and communicate with human operator with that kind of data such as if there is an object or not and a window is open. Both for visualization of information and as human machine interface for remote control, a 3D model can give much more useful information than the typical 2D maps used in many robotic applications today. It is easier to understandable and makes user feel like being in a location of robot so that user could interact with robot more naturally in a remote circumstance and see structures such as windows and doors that cannot be seen in a 2D model. In this paper we present our simple and easy to use method to obtain a 3D textured model. For expression of reality, we need to integrate the 3D models and real scenes. Most of other cases of 3D modeling method consist of two data acquisition devices. One for getting a 3D model and another for obtaining realistic textures. In this case, the former device would be 2D laser range-finder and the latter device would be common camera. Our algorithm consists of building a measurement-based 2D metric map which is acquired by laser range-finder, texture acquisition/stitching and texture-mapping to corresponding 3D model. The algorithm is implemented with laser sensor for obtaining 2D/3D metric map and two cameras for gathering texture. Our geometric 3D model consists of planes that model the floor and walls. The geometry of the planes is extracted from the 2D metric map data. Textures for the floor and walls are generated from the images captured by two 1394 cameras which have wide Field of View angle. Image stitching and image cutting process is used to generate textured images for corresponding with a 3D model. The algorithm is applied to 2 cases which are corridor and space that has the four wall like room of building. The generated 3D map model of indoor environment is shown with VRML format and can be viewed in a web browser with a VRML plug-in. The proposed algorithm can be applied to 3D model-based remote surveillance system through WWW.

  • PDF

Deriving Usability Evaluation Criteria for Threat Modeling Tools (위협 모델링 도구의 사용성 평가기준 도출)

  • In-no Hwang;Young-seop Shin;Hyun-suk Cho;Seung-joo Kim
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.34 no.4
    • /
    • pp.763-780
    • /
    • 2024
  • As the domestic and international landscape undergoes rapid changes, the importance of implementing security measures in response to the growing threats that businesses face is increasing. In this context, the need for Security by Design (SbD), integrating security from the early design stages, is becoming more pronounced, with threat modeling recognized as a fundamental tool of SbD. Particularly, to save costs and time by detecting and resolving security issues early, the application of the Shift Left strategy requires the involvement of personnel with limited security expertise, such as software developers, in threat modeling. Although various automated threat modeling tools have been released, their lack of user-friendliness for personnel lacking security expertise poses challenges in conducting threat modeling effectively. To address this, we conducted an analysis of research related to threat modeling tools and derived usability evaluation criteria based on the GQM(Goal-Question-Metric) approach. An expert survey was conducted to validate both the validity and objectivity of the derived criteria. We performed usability evaluations of three threat modeling tools (MS TMT, SPARTA, PyTM), and the evaluation results led to the conclusion that MS TMT exhibited superior usability compared to other tools. This study aims to contribute to the creation of an environment where personnel with limited security expertise can effectively conduct threat modeling by proposing usability evaluation criteria.

A-team Based Approach for Reactive Power/Voltage Control Considering Steady State Security Assessment (정태 안전성 평가를 고려한 무효전력 전압제어를 위한 A-team기반 접근법)

  • Kim, Doo-Hyun
    • Journal of the Korean Society of Safety
    • /
    • v.11 no.2
    • /
    • pp.150-159
    • /
    • 1996
  • In this paper, an A-team(Asynchronous Team ) based approach for Reactive power and volage control considering static security assessment in a power system with infrastructural deficiencies is proposed. Reactive power and voltage control problem is the one of optimally establishing voltage level given several constraints such as reactive generation, voltage magnitude, line flow, and other switchable reactive power sources. It can be formulated as a mixed-integer linear programming(MILP) problem without deteriorating of solution accuracy to a certain extent. The security assessment is to estimate the relative robustness of the system in Its present state through the evaluation of data provided by security monitoring. Deterministic approach based on AC load flow calculations is adopted to assess the system security, especially voltage security. A security metric, as a standard of measurement for power system security, producting a set of discrete values rather than binary values, is employed. In order to analyze the above two problems, reactive power/voltage control problem and static security assessment problem, in an integrated fashion for real-time operations, a new organizational structure, called an A-team, is adopted. An A-team is an organization for agents which ale all autonomeus, work in parallel and communicate asynchronously, which is well-suited to the development of computer-based, multi-agent systems for operations. This A-team based approach, although it is still in the beginning stage, also has potential for handling other difficult power system problems.

  • PDF

A GQM Approach to Evaluation of the Quality of SmartThings Applications Using Static Analysis

  • Chang, Byeong-Mo;Son, Janine Cassandra;Choi, Kwanghoon
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.6
    • /
    • pp.2354-2376
    • /
    • 2020
  • SmartThings is one of the most popular open platforms for home automation IoT solutions that allows users to create their own applications called SmartApps for personal use or for public distribution. The nature of openness demands high standards on the quality of SmartApps, but there have been few studies that have evaluated this thoroughly yet. As part of software quality practice, code reviews are responsible for detecting violations of coding standards and ensuring that best practices are followed. The purpose of this research is to propose systematically designed quality metrics under the well-known Goal/Question/Metric methodology and to evaluate the quality of SmartApps through automatic code reviews using a static analysis. We first organize our static analysis rules by following the GQM methodology, and then we apply the rules to real-world SmartApps to analyze and evaluate them. A study of 105 officially published and 74 community-created real-world SmartApps found a high ratio of violations in both types of SmartApps, and of all violations, security violations were most common. Our static analysis tool can effectively inspect reliability, maintainability, and security violations. The results of the automatic code review indicate the common violations among SmartApps.

SOME RESULTS RELATED WITH POISSON-SZEGÖKERNEL AND BEREZIN TRANSFORM

  • Yang, Gye Tak;Choi, Ki Seong
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.24 no.3
    • /
    • pp.417-426
    • /
    • 2011
  • Let ${\mu}$ be a finite positive Borel measure on the unit ball $B{\subset}{\mathbb{C}}^n$ and ${\nu}$ be the Euclidean volume measure such that ${\nu}(B)=1$. For the unit sphere $S=\{z:{\mid}z{\mid}=1\}$, ${\sigma}$ is the rotation-invariant measure on S such that ${\sigma}(S) =1$. Let ${\mathcal{P}}[f]$ be the Poisson-$Szeg{\ddot{o}}$ integral of f and $\tilde{\mu}$ be the Berezin transform of ${\mu}$. In this paper, we show that if there is a constant M > 0 such that ${\int_B}{\mid}{\mathcal{P}}[f](z){\mid}^pd{\mu}(z){\leq}M{\int_B}{\mid}{\mathcal{P}}[f](z){\mid}^pd{\nu}(z)$ for all $f{\in}L^p(\sigma)$, then ${\parallel}{\tilde{\mu}}{\parallel}_{\infty}{\equiv}{\sup}_{z{\in}B}{\mid}{\tilde{\mu}}(z){\mid}<{\infty}$, and we show that if ${\parallel}{\tilde{\mu}{\parallel}_{\infty}<{\infty}$, then ${\int_B}{\mid}{\mathcal{P}}[f](z){\mid}^pd{\mu}(z){\leq}C{\mid}{\mid}{\tilde{\mu}}{\mid}{\mid}_{\infty}{\int_S}{\mid}f(\zeta){\mid}^pd{\sigma}(\zeta)$ for some constant C.

Algorithms for Classifying the Results at the Baccalaureate Exam-Comparative Analysis of Performances

  • Marcu, Daniela;Danubianu, Mirela;Barila, Adina;Simionescu, Corina
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.8
    • /
    • pp.35-42
    • /
    • 2021
  • In the current context of digitalization of education, the use of modern methods and techniques of data analysis and processing in order to improve students' school results has a very important role. In our paper, we aimed to perform a comparative study of the classification performances of AdaBoost, SVM, Naive Bayes, Neural Network and kNN algorithms to classify the results obtained at the Baccalaureate by students from a college in Suceava, during 2012-2019. To evaluate the results we used the metrics: AUC, CA, F1, Precision and Recall. The AdaBoost algorithm achieves incredible performance for classifying the results into two categories: promoted / rejected. Next in terms of performance is Naive Bayes with a score of 0.999 for the AUC metric. The Neural Network and kNN algorithms obtain scores of 0.998 and 0.996 for AUC, respectively. SVM shows poorer performance with the score 0.987 for AUC. With the help of the HeatMap and DataTable visualization tools we identified possible correlations between classification results and some characteristics of data.

A Machine Learning Univariate Time series Model for Forecasting COVID-19 Confirmed Cases: A Pilot Study in Botswana

  • Mphale, Ofaletse;Okike, Ezekiel U;Rafifing, Neo
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.1
    • /
    • pp.225-233
    • /
    • 2022
  • The recent outbreak of corona virus (COVID-19) infectious disease had made its forecasting critical cornerstones in most scientific studies. This study adopts a machine learning based time series model - Auto Regressive Integrated Moving Average (ARIMA) model to forecast COVID-19 confirmed cases in Botswana over 60 days period. Findings of the study show that COVID-19 confirmed cases in Botswana are steadily rising in a steep upward trend with random fluctuations. This trend can also be described effectively using an additive model when scrutinized in Seasonal Trend Decomposition method by Loess. In selecting the best fit ARIMA model, a Grid Search Algorithm was developed with python language and was used to optimize an Akaike Information Criterion (AIC) metric. The best fit ARIMA model was determined at ARIMA (5, 1, 1), which depicted the least AIC score of 3885.091. Results of the study proved that ARIMA model can be useful in generating reliable and volatile forecasts that can used to guide on understanding of the future spread of infectious diseases or pandemics. Most significantly, findings of the study are expected to raise social awareness to disease monitoring institutions and government regulatory bodies where it can be used to support strategic health decisions and initiate policy improvement for better management of the COVID-19 pandemic.