• Title/Summary/Keyword: Secure sensor networks

Search Result 160, Processing Time 0.026 seconds

SEC Approach for Detecting Node Replication Attacks in Static Wireless Sensor Networks

  • Sujihelen, L.;Jayakumar, C.;Senthilsingh, C.
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.6
    • /
    • pp.2447-2455
    • /
    • 2018
  • Security is more important in many sensor applications. The node replication attack is a major issue on sensor networks. The replicated node can capture all node details. Node Replication attacks use its secret cryptographic key to successfully produce the networks with clone nodes and also it creates duplicate nodes to build up various attacks. The replication attacks will affect in routing, more energy consumption, packet loss, misbehavior detection, etc. In this paper, a Secure-Efficient Centralized approach is proposed for detecting a Node Replication Attacks in Wireless Sensor Networks for Static Networks. The proposed system easily detects the replication attacks in an effective manner. In this approach Secure Cluster Election is used to prevent from node replication attack and Secure Efficient Centralized Approach is used to detect if any replicated node present in the network. When comparing with the existing approach the detection ratio, energy consumption performs better.

TriSec: A Secure Data Framework for Wireless Sensor Networks Using Authenticated Encryption

  • Kumar, Pardeep;Cho, Sang-Il;Lee, Dea-Seok;Lee, Young-Dong;Lee, Hoon-Jae
    • Journal of information and communication convergence engineering
    • /
    • v.8 no.2
    • /
    • pp.129-135
    • /
    • 2010
  • Wireless sensor networks (WSNs) are an emerging technology and offers economically viable monitoring solution to many challenging applications. However, deploying new technology in hostile environment, without considering security in mind has often proved to be unreasonably unsecured. Apparently, security techniques face many critical challenges in WSNs like data security and secrecy due to its hostile deployment nature. In order to resolve security in WSNs, we propose a novel and efficient secure framework called TriSec: a secure data framework for wireless sensor networks to attain high level of security. TriSec provides data confidentiality, authentication and data integrity to sensor networks. TriSec supports node-to-node encryption using PingPong-128 stream cipher based-privacy. A new PingPong-MAC (PP-MAC) is incorporated with PingPong stream cipher to make TriSec framework more secure. PingPong-128 is fast keystream generation and it is very suitable for sensor network environment. We have implemented the proposed scheme on wireless sensor platform and our result shows their feasibility.

An Identity-based Ring Signcryption Scheme: Evaluation for Wireless Sensor Networks

  • Sharma, Gaurav;Bala, Suman;Verma, Anil K.
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.2 no.2
    • /
    • pp.57-66
    • /
    • 2013
  • Wireless Sensor Networks consist of small, inexpensive, low-powered sensor nodes that communicate with each other. To achieve a low communication cost in a resource constrained network, a novel concept of signcryption has been applied for secure communication. Signcryption enables a user to perform a digital signature for providing authenticity and public key encryption for providing message confidentiality simultaneously in a single logical step with a lower cost than that of the sign-then-encrypt approach. Ring signcryption maintains the signer's privacy, which is lacking in normal signcryption schemes. Signcryption can provide confidentiality and authenticity without revealing the user's identity of the ring. This paper presents the security notions and an evaluation of an ID-based ring signcryption scheme for wireless sensor networks. The scheme has been proven to be better than the existing schemes. The proposed scheme was found to be secure against adaptive chosen ciphertext ring attacks (IND-IDRSC-CCA2) and secure against an existential forgery for adaptive chosen message attacks (EF-IDRSC-ACMA). The proposed scheme was found to be more efficient than scheme for Wireless Sensor Networks reported by Qi. et al. based on the running time and energy consumption.

  • PDF

Application Driven Cluster Based Group Key Management with Identifier in Mobile Wireless Sensor Networks

  • Huh, Eui-Nam;Nahar Sultana
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.1 no.1
    • /
    • pp.1-17
    • /
    • 2007
  • This paper proposes and analyzes a scalable and an efficient cluster based group key management protocol by introducing identity based infrastructure for secure communication in mobile wireless sensor networks. To ensure scalability and dynamic re-configurability, the system employs a cluster based approach by which group members are separated into clusters and the leaders of clusters securely communicate with each other to agree on a group key in response to changes in membership and member movements. Through analysis we have demonstrated that our protocol has a high probability of being resilient for secure communication among mobile nodes. Finally, it is established that the proposed scheme is efficient for secure positioning in wireless sensor networks.

Secure Routing Mechanism to Defend Multiple Attacks in Sensor Networks (무선 센서 네트워크에서 다중 공격 방어를 위한 보안 라우팅 기법)

  • Moon, Soo-Young;Cho, Tae-Ho
    • Journal of Intelligence and Information Systems
    • /
    • v.16 no.1
    • /
    • pp.45-56
    • /
    • 2010
  • Sensor Networks are composed of many sensor nodes, which are capable of sensing, computing, and communicating with each other, and one or more sink node(s). Sensor networks collect information of various objects' identification and surrounding environment. Due to the limited resources of sensor nodes, use of wireless channel, and the lack of infrastructure, sensor networks are vulnerable to security threats. Most research of sensor networks have focused on how to detect and counter one type of attack. However, in real sensor networks, it is impractical to predict the attack to occur. Additionally, it is possible for multiple attacks to occur in sensor networks. In this paper, we propose the Secure Routing Mechanism to Defend Multiple Attacks in Sensor Networks. The proposed mechanism improves and combines existing security mechanisms, and achieves higher detection rates for single and multiple attacks.

Study on the OMAC-SNEP for Unattended Security System Using Wireless Sensor Networks (무선 센서 네트워크를 이용한 무인 경비 시스템에서의 OMAC-SNEP 기술에 관한 연구)

  • Lee Seong-Jae;Kim Hak-Beom;Youm Heung-Youl
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.16 no.1
    • /
    • pp.105-114
    • /
    • 2006
  • Ubiquitous Sensor Network consists of a number of sensor nodes with a limited computation power and limited communication capabilities, and a sensor node is able to communicate with each other at anytime and in any place. Due to the rapid research and development in sensor networks, it will rapidly grow into environments where hmm beings can interact in an intuitive way with sensing objects which can be PDAs, sensors, or even clothes in the future. We are aiming at realizing an Unattended Secure Security System to apply it to Ubiquitous Sensor Network. In this paper, the vulnerabilities in the Unattended security system are identified, and a new protocol called OMAC-SNEP is proposed for the Unattended Secure Security System. Because the CBC-MAC in SNEP is not secure unless the message length is fixed, the CBC-MAC in SNEP was replaced with OMAC in SNEP. We have shown that the proposed protocol is secure for my bit length of messages and is almost as efficient as the CBC-MAC with only one key. OMAC-SNEP can be used not only in Unattended Security System, but also any other Sensor Networks.

Secure Mobile Query in Wireless Sensor Networks (무선 센서 네트워크에서의 안전한 모바일 쿼리 프로토콜)

  • Lim, Chae Hoon
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.23 no.6
    • /
    • pp.1191-1197
    • /
    • 2013
  • In large-scale distributed sensor networks, it is often recommended to employ mobile sinks, instead of fixed base stations, for data collection to prolong network lifetime and enhance security. Mobile sinks may also be used, e.g., for network repair, identification and isolation of compromised sensor nodes and localized reprogramming, etc. In such circumstances, mobile sinks should be able to securely interact with neighbor sensor nodes while traversing the network. This paper presents a secure and efficient mobile query protocol that can be used for such purposes.

Multiregional secure localization using compressive sensing in wireless sensor networks

  • Liu, Chang;Yao, Xiangju;Luo, Juan
    • ETRI Journal
    • /
    • v.41 no.6
    • /
    • pp.739-749
    • /
    • 2019
  • Security and accuracy are two issues in the localization of wireless sensor networks (WSNs) that are difficult to balance in hostile indoor environments. Massive numbers of malicious positioning requests may cause the functional failure of an entire WSN. To eliminate the misjudgments caused by malicious nodes, we propose a compressive-sensing-based multiregional secure localization (CSMR_SL) algorithm to reduce the impact of malicious users on secure positioning by considering the resource-constrained nature of WSNs. In CSMR_SL, a multiregion offline mechanism is introduced to identify malicious nodes and a preprocessing procedure is adopted to weight and balance the contributions of anchor nodes. Simulation results show that CSMR_SL may significantly improve robustness against attacks and reduce the influence of indoor environments while maintaining sufficient accuracy levels.

A Key Management Scheme for Commodity Sensor Networks (소모형 센서 네트워크 환경에 적합한 키 관리 스킴)

  • Kim Young-Ho;Lee Hwa-Seong;Lee Dong-Hoon
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.16 no.2
    • /
    • pp.71-80
    • /
    • 2006
  • To guarantee secure communication in wireless sensor networks, secret keys should be securely established between sensor nodes. Recently, a simple key distribution scheme has been proposed for pair-wise key establishment in sensor networks by Anderson, Chan, and Perrig. They defined a practical attack model for non-critical commodity sensor networks. Unfortunately, the scheme is vulnerable under their attack model. In this paper, we describe the vulnerability in their scheme and propose a modified one. Our scheme is secure under their attack model and the security of our scheme is proved. Furthermore, our scheme does not require additional communication overhead nor additional infrastructure to load potential keys into sensor nodes.

Secure and Robust Clustering for Quantized Target Tracking in Wireless Sensor Networks

  • Mansouri, Majdi;Khoukhi, Lyes;Nounou, Hazem;Nounou, Mohamed
    • Journal of Communications and Networks
    • /
    • v.15 no.2
    • /
    • pp.164-172
    • /
    • 2013
  • We consider the problem of secure and robust clustering for quantized target tracking in wireless sensor networks (WSN) where the observed system is assumed to evolve according to a probabilistic state space model. We propose a new method for jointly activating the best group of candidate sensors that participate in data aggregation, detecting the malicious sensors and estimating the target position. Firstly, we select the appropriate group in order to balance the energy dissipation and to provide the required data of the target in the WSN. This selection is also based on the transmission power between a sensor node and a cluster head. Secondly, we detect the malicious sensor nodes based on the information relevance of their measurements. Then, we estimate the target position using quantized variational filtering (QVF) algorithm. The selection of the candidate sensors group is based on multi-criteria function, which is computed by using the predicted target position provided by the QVF algorithm, while the malicious sensor nodes detection is based on Kullback-Leibler distance between the current target position distribution and the predicted sensor observation. The performance of the proposed method is validated by simulation results in target tracking for WSN.