• Title/Summary/Keyword: Secure Token

Search Result 56, Processing Time 0.023 seconds

Biometric Certificate on Secure Group Communication

  • Han, Kun-Hee
    • Journal of Convergence Society for SMB
    • /
    • v.4 no.4
    • /
    • pp.25-29
    • /
    • 2014
  • Security is a primary concern in group communication, and secure authentication is essential to establishing a secure group communication. Most conventional authentications consist of knowledge-based and token-based methods. One of the token-based methods is a X.509 certificate, which is used under a Public Key Infrastructure (PKI); it is the most well-known authentication system in a distributed network environment. However, it has a well-known weakness, which only proves the belonging of a certificate. PKI cannot assure identity of a person. The conventional knowledge-based and token-based methods do not really provide positive personal identification because they rely on surrogate representations of the person's identity. Therefore, I propose a secure X.509 certificate with biometric information to assure the identity of the person who uses the X.509 certificate in a distributed computing environment.

  • PDF

Stateless Randomized Token Authentication for Performance Improvement of OAuth 2.0 MAC Token Authentication (OAuth 2.0 MAC 토큰인증의 효율성 개선을 위한 무상태 난수화토큰인증)

  • Lee, Byoungcheon
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.28 no.6
    • /
    • pp.1343-1354
    • /
    • 2018
  • OAuth 2.0 bearer token and JWT(JSON web token), current standard technologies for authentication and authorization, use the approach of sending fixed token repeatedly to server for authentication that they are subject to eavesdropping attack, thus they should be used in secure communication environment such as HTTPS. In OAuth 2.0 MAC token which was devised as an authentication scheme that can be used in non-secure communication environment, server issues shared secret key to authenticated client and the client uses it to compute MAC to prove the authenticity of request, but in this case server has to store and use the shared secret key to verify user's request. Therefore, it's hard to provide stateless authentication service. In this paper we present a randomized token authentication scheme which can provide stateless MAC token authentication without storing shared secret key in server side. To remove the use of HTTPS, we utilize secure communication using server certificate and simple signature-based login using client certificate together with the proposed randomized token authentication to achieve the fully stateless authentication service and we provide an implementation example.

Per-transaction Shared Key Scheme to Improve Security on Smart Payment System

  • Ahmad, Fawad;Jung, Younchan
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.8 no.1
    • /
    • pp.7-18
    • /
    • 2016
  • Several authentication methods have been developed to make use of tokens in the mobile networks and smart payment systems. Token used in smart payment system is genearated in place of Primary Account Number. The use of token in each payment transaction is advantageous because the token authentication prevents enemy from intercepting credit card number over the network. Existing token authentication methods work together with the cryptogram, which is computed using the shared key that is provisioned by the token service provider. Long lifetime and repeated use of shared key cause potential brawback related to its vulnerability against the brute-force attack. This paper proposes a per-transaction shared key mechanism, where the per-transaction key is agreed between the mobile device and token service provider for each smart payment transaction. From server viewpoint, per-transaction key list is easy to handle because the per-transaction key has short lifetime below a couple of seconds and the server does not need to maintain the state for the mobile device. We analyze the optimum size of the per-transaction shared key which satisfy the requirements for transaction latency and security strength for secure payment transactions.

Secure Naming Prefix Allocation Scheme for Mobile Content Centric Networking (이동 콘텐츠 중심 네트워크에서의 안전한 네이밍 할당 방안)

  • Lee, Jihoon;Lee, Juyong
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.8
    • /
    • pp.1466-1470
    • /
    • 2016
  • As individuals create many contents anytime and anywhere together with the widespread dissemination of smart devices as well as various social networking services (SNS), content centric networking (CCN) has regarded as a new networking technology. However, CCN is exposed to malicious attacks on the mobility management of mobile content sources during handover and high volume of control messages. Therefore, this paper presents a secure duplicate name detection (SecureDND) mechanism without additional control messages by signed information and secure token. It is shown from the performance evaluation that the proposed scheme can provide low control overhead, which results in the network scalability.

Reliable Cascaded Delegation Scheme for Mobile Agent Environments (이동 에이전트 환경을 위한 안전한 연속 위임 구현 기법)

  • Lee, Hyun-Suk;Eom, Young-Ik
    • The KIPS Transactions:PartC
    • /
    • v.11C no.1
    • /
    • pp.31-38
    • /
    • 2004
  • In mobile agent environments, migration of an agent occurs continuously due to the mobility of agents. So cascaded delegation can occur among places for delegating the privilege to execute the agent. Because the existing delegation scheme considers only the delegation between two places that participate in migration of an agent, it does not support secure cascaded delegation. In this paper, we propose a cascaded delegation scheme that provides agents with secure cascaded delegation in mobile agent environments. Depending on the trust-relationship among places, the proposed scheme achieves the goal by nesting each delegation token or by nesting only initial token signed by creator of the agent within the signed part of the next immediate delegation token. And we prove that the proposed scheme is secure against the attack of replaying a message and the attack of substituting a delegation token.

How to design the token reinforcement based on token economy for blockchain model

  • Yoo, Soonduck
    • International Journal of Advanced Culture Technology
    • /
    • v.8 no.1
    • /
    • pp.157-164
    • /
    • 2020
  • The reinforcement of the token, which is based on the token economy currently applied in blockchain-based cryptography, plays a critical role in forming the cryptographic-related ecosystem. Therefore, in this paper, it was investigated the reinforcement principle of token supporting the Token economy for blockchain model. In order to create a healthy ecosystem based on the reinforcement system principle, it is necessary to find ways to secure scalability by seeking consensus between the participants and the market economy structure so that it can generate an influx of more participants than seeking to maximize profits of certain people. Desirable behavior is defined as an action required by ecosystem participants that have the property of making the token ecosystem sustainable, and to do so, each individual receives appropriate incentives (rewards) when taking this action, ultimately encouraging voluntary participation and action by all participants in the ecosystem to optimize the interests of both individuals and participants. The expected benefit of this study may contribute to the establishment of various business models based on the principle of the reinforcement system.

Efficient Wi-Fi Security Protocol Using Dual Tokens (이중토큰을 이용한 효율적인 Wi-Fi 보안 프로토콜)

  • Lee, Byoungcheon
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.29 no.2
    • /
    • pp.417-429
    • /
    • 2019
  • WPA2-PSK uses a 4-way handshake protocol based on a shared secret to establish a secure session between a client and an AP. It has various security problems such as eavesdropping attacks and the secure session establishment process is inefficient because it requires multiple interactions between client and AP. The WPA3 standard has recently been proposed to solve the security problem of WPA2, but it is a small improvement using the same 4-way handshake methodology. OAuth 2.0 token authentication is widely used on the web, which can be used to keep an authenticated state of a client for a long time by using tokens issued to an authenticated client. In this paper, we apply the dual-token based randomized token authentication technology to the Wi-Fi security protocol to achieve an efficient Wi-Fi security protocol by dividing initial authentication and secure session establishment. Once a client is authenticated and equipped with dual tokens issued by AP, it can establish secure session using them quickly with one message exchange over a non-secure channel.

An Efficient Secure Routing Protocol Based on Token Escrow Tree for Wireless Ad Hoc Networks (무선 애드 혹 네트워크에서 보안성을 고려한 Token Escrow 트리 기반의 효율적인 라우팅 프로토콜)

  • Lee, Jae Sik;Kim, Sung Chun
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.2 no.4
    • /
    • pp.155-162
    • /
    • 2013
  • Routing protocol in ad hoc mobile networking has been an active research area in recent years. However, the environments of ad hoc network tend to have vulnerable points from attacks, because ad hoc mobile network is a kind of wireless network without centralized authentication or fixed network infrastructure such as base stations. Also, existing routing protocols that are effective in a wired network become inapplicable in ad hoc mobile networks. To address these issues, several secure routing protocols have been proposed: SAODV and SRPTES. Even though our protocols are intensified security of networks than existing protocols, they can not deal fluidly with frequent changing of wireless environment. Moreover, demerits in energy efficiency are detected because they concentrated only safety routing. In this paper, we propose an energy efficient secure routing protocol for various ad hoc mobile environment. First of all, we provide that the nodes distribute security information to reliable nodes for secure routing. The nodes constitute tree-structured with around nodes for token escrow, this action will protect invasion of malicious node through hiding security information. Next, we propose multi-path routing based security level for protection from dropping attack of malicious node, then networks will prevent data from unexpected packet loss. As a result, this algorithm enhances packet delivery ratio in network environment which has some malicious nodes, and a life time of entire network is extended through consuming energy evenly.

Dynamic Token Escrow Set Protocol for Secure Ad Hoc Networks (보안 애드 혹 네트워크를 위한 동적인 토큰 분배 프로토콜)

  • Lee, Jae Sik;Kim, Sung Chun
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2009.11a
    • /
    • pp.457-458
    • /
    • 2009
  • 애드 혹 네트워크는 Wireless network의 특성 상 보안에 취약하고 또한 기존의 보안 솔루션을 적용하기 어렵다는 문제점을 가지고 있다. 이러한 애드 혹 네트워크에서의 보안 상 문제점을 해결하기 위한 Token Escrow방식을 살펴보고, 확장성 있는 Token 분배 방법을 통하여 발전된 기법을 제안한다.

A secure token-updated authentication scheme using security key (비밀키를 이용한 토큰 업데이트 보안 인증 기법)

  • Liang, Jun;Jang, In-Joo;Yoo, Hyeong-Seon
    • The Journal of Society for e-Business Studies
    • /
    • v.12 no.1
    • /
    • pp.89-97
    • /
    • 2007
  • Recently, a large number of authentication schemes based on smart cards have been proposed, using the thinking of OTP (one-time password) to withstand replay attack. Unfortunately, if these schemes implement on PCs instead of smart cards, most of themcannot withstand impersonation attack and Stolen-Verifier attack since the data on PCs is easy to read and steal. In this paper, a secure authentication scheme based on a security key and a renewable token is proposed to implement on PCs. A comparison with other schemes demonstrates the proposed scheme has following merits: (1) Withstanding Stolen-Verifier attack (2) Withstanding Impersonation attack (3) Providing mutual authentication; (4) Easy to construct secure session keys.

  • PDF