• Title/Summary/Keyword: Secretase

Search Result 81, Processing Time 0.03 seconds

Characterization of Anti-dementia, Cadiovascular and Antioxidant Functionalities in Korean Traditional Alcoholic Beverages (전통주의 항치매 활성과 심혈관질환 활성 및 항산화 활성 탐색)

  • Seo, Dong-Soo;Kim, Jae-Ho;Ahn, Byung-Hak;Lee, Jong-Soo
    • Microbiology and Biotechnology Letters
    • /
    • v.36 no.4
    • /
    • pp.320-325
    • /
    • 2008
  • Some anti-dementia, cardiovascular and antioxidant functionalities of Korean traditional alcoholic beverages were characterized. Anti-dementia acetylcholinesterase inhibitory activities were generally not detected or low except BHS-ju (19.5%) and buthyrylcholinesterase inhibitory activities were also show below 1.0%. However, $\beta$-Secretase inhibitory activities were high in PMR-ju (42.5%), WJY-ju (41.6%) and SSJ-ju (42.9%). Antihypertensive angiotensin I-converting enzyme inhibitory activities was the highest in YON-ju (85.6%), however fibrinolytic activities were not detected in all traditional alcohol beverages. Furthermore, antioxidant activities were very high in SBB-ju (72.2%) and GMB-ju (67.9%), however SOD like activities generally were show below 20%.

Zinc Inhibits Amyloid ${\beta}$ Production from Alzheimer's Amyloid Precursor Protein in SH-SY5Y Cells

  • Lee, Jin-U;Kim, Chul-Hoon;Kim, Dong-Goo;Ahn, Young-Soo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.13 no.3
    • /
    • pp.195-200
    • /
    • 2009
  • Zinc released from excited glutamatergic neurons accelerates amyloid ${\beta}$ (A ${\beta}$) aggregation, underscoring the therapeutic potential of zinc chelation for the treatment of Alzheimer's disease (AD). Zinc can also alter A ${\beta}$ concentration by affecting its degradation. In order to elucidate the possible role of zinc influx in secretase-processed A ${\beta}$ production, SH-SY5Y cells stably expressing amyloid precursor protein (APP) were treated with pyrrolidine dithiocarbamate (PDTC), a zinc ionophore, and the resultant changes in APP processing were examined. PDTC decreased A ${\beta}$ 40 and A ${\beta}$ 42 concentrations in culture media bathing APP-expressing SH-SY5Y cells. Measuring the levels of a series of C-terminal APP fragments generated by enzymatic cutting at different APP-cleavage sites showed that both ${\beta}$-and ${\alpha}$-cleavage of APP were inhibited by zinc influx. PDTC also interfered with the maturation of APP. PDTC, however, paradoxically increased the intracellular levels of A ${\beta}$ 40. These results indicate that inhibition of secretase-mediated APP cleavage accounts -at least in part- for zinc inhibition of A ${\beta}$ secretion.

Comprehensive MicroRNAome Analysis of the Relationship Between Alzheimer Disease and Cancer in PSEN Double-Knockout Mice

  • Ham, Suji;Kim, Tae Kyoo;Ryu, Jeewon;Kim, Yong Sik;Tang, Ya-Ping;Im, Heh-In
    • International Neurourology Journal
    • /
    • v.22 no.4
    • /
    • pp.237-245
    • /
    • 2018
  • Purpose: Presenilins are functionally important components of ${\gamma}$-secretase, which cleaves a number of transmembrane proteins. Manipulations of PSEN1 and PSEN2 have been separately studied in Alzheimer disease (AD) and cancer because both involve substrates of ${\gamma}$-secretase. However, numerous clinical studies have reported an inverse correlation between AD and cancer. Interestingly, AD is a neurodegenerative disorder, whereas cancer is characterized by the proliferation of malignant cells. However, this inverse correlation in the PSEN double-knockout (PSEN dKO) mouse model of AD has been not elucidated, although doing so would shed light onto the relationship between AD and cancer. Methods: To investigate the inverse relationship of AD and cancer under conditions of PSEN loss, we used the hippocampus of 7-month-old and 18-month-old PSEN dKO mice for a microRNA (miRNA) microarray analysis, and explored the tumorsuppressive or oncogenic role of differentially-expressed miRNAs. Results: The total number of miRNAs that showed changes in expression level was greater at 18 months of age than at 7 months. Most of the putative target genes of the differentially-expressed miRNAs involved Cancer pathways. Conclusions: Based on literature reviews, many of the miRNAs involved in Cancer pathways were found to be known tumorsuppressive miRNAs, and their target genes were known or putative oncogenes. In conclusion, the expression levels of known tumor-suppressive miRNAs increased at 7 and 18 months, in the PSEN dKO mouse model of AD, supporting the negative correlation between AD and cancer.

Effect of Reserpine on the Behavioral Defects, Aβ-42 Deposition and NGF Metabolism in Tg2576 Transgenic Mouse Model for Alzheimer's Disease (알츠하이머질환 모델동물인 Tg2576마우스의 행동, Aβ-42 침적, 신경성장인자 대사에 미치는 reserpine의 영향)

  • Go, Jun;Choi, Sun Il;Kim, Ji Eun;Lee, Young Ju;Kwak, Moon Hwa;Koh, Eun Kyoung;Song, Sung Hwa;Sung, Ji Eun;Hwang, Dae Youn
    • Journal of Life Science
    • /
    • v.23 no.6
    • /
    • pp.812-824
    • /
    • 2013
  • Reserpine, an anti-hypertensive drug, is able to positively modulate several phenotypes associated with $A{\beta}$ toxicity in a Caenorhabditis elegans model of Alzheimer's disease (AD). We investigated into the therapeutic effects of reserpine on mammalian neurodegenerative disorders, and found that significant alteration of the key factors influencing AD was detected in Tg2576 mice after reserpine treatment for 30 days. The aggressive behavior of Tg2576 mice was significantly improved upon reserpine treatment, whereas their social contact was consistently maintained. Furthermore, the levels of $A{\beta}$-42 peptide in the hippocampus of the brain and blood serum were lower in the reserpine-treated group than in the vehicle-treated group. Among g-secretase components, the expression levels of PS-2, Pen-2, and APH-1 were slightly lower in reserpine-treated Tg2576 mice, although a significant change in nicastrin (NCT) expression was not detected. Furthermore, the serum level of nerve growth factor (NGF) increased in reserpine-treated Tg2576 mice compared with vehicle-treated mice. Among down-stream effectors of the NGF receptor TrkA signaling pathway, reserpine treatment induced elevation of TrkA phosphorylation and reduction of ERK phosphorylation. In addition, in the NGF receptor $p75^{NTR}$ signaling pathway, the expression levels of $p75^{NTR}$ and Bcl-2 were enhanced in reserpine-treated Tg2576 mice compared with vehicle-treated mice, whereas the expression level of RhoA declined. Overall, these results suggest that reserpine can help relieve AD pathogenesis in Tg2576 mice through downregulation of $A{\beta}$-42 deposition, alteration of ${\gamma}$-secretase components, and regulation of NGF metabolism.

Possible roles of amyloid intracellular domain of amyloid precursor protein

  • Chang, Keun-A;Suh, Yoo-Hun
    • BMB Reports
    • /
    • v.43 no.10
    • /
    • pp.656-663
    • /
    • 2010
  • Amyloid precursor protein (APP), which is critically involved in the pathogenesis of Alzheimer's disease (AD), is cleaved by gamma/epsilon-secretase activity and results in the generation of different lengths of the APP Intracellular C-terminal Domain (AICD). In spite of its small size and short half-life, AICD has become the focus of studies on AD pathogenesis. Recently, it was demonstrated that AICD binds to different intracellular binding partners ('adaptor protein'), which regulate its stability and cellular localization. In terms of choice of adaptor protein, phosphorylation seems to play an important role. AICD and its various adaptor proteins are thought to take part in various cellular events, including regulation of gene transcription, apoptosis, calcium signaling, growth factor, and $NF-{\kappa}B$ pathway activation, as well as the production, trafficking, and processing of APP, and the modulation of cytoskeletal dynamics. This review discusses the possible roles of AICD in the pathogenesis of neurodegenerative diseases including AD.

Synthesis and Biological Activities of (4-Arylpiperazinyl)piperidines as Nonpeptide BACE 1 Inhibitors

  • Boja, Poojary;Won, Sun-Woo;Suh, Dong-Hoon;Chu, Jeong-Hyun;Park, Woo-Kyu;Lim, Hee-Jong
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.4
    • /
    • pp.1249-1252
    • /
    • 2011
  • Inhibition of BACE 1 activity is considered as a promising therapeutic target for Alzheimer's Disease (AD). Synthesis and inhibitory activities of (4-arylpiperazinyl)piperidines by bioisosteric replacement of a biaryl group with an arylpiperazine as BACE 1 inhibitors are described. The resulting (4-arylpiperazinyl)piperidines represent novel nonpeptide BACE 1 inhibitors with improved in vitro potency.

Proteolytic cleavages of MET: the divide-and-conquer strategy of a receptor tyrosine kinase

  • Fernandes, Marie;Duplaquet, Leslie;Tulasne, David
    • BMB Reports
    • /
    • v.52 no.4
    • /
    • pp.239-249
    • /
    • 2019
  • Membrane-anchored full-length MET stimulated by its ligand HGF/SF induces various biological responses, including survival, growth, and invasion. This panel of responses, referred to invasive growth, is required for embryogenesis and tissue regeneration in adults. On the contrary, MET deregulation is associated with tumorigenesis in many kinds of cancer. In addition to its well-documented ligand-stimulated downstream signaling, the receptor can be cleaved by proteases such as secretases, caspases, and calpains. These cleavages are involved either in MET receptor inactivation or, more interestingly, in generating active fragments that can modify cell fate. For instance, MET fragments can promote cell death or invasion. Given a large number of proteases capable of cleaving MET, this receptor appears as a prototype of proteolytic-cleavage-regulated receptor tyrosine kinase. In this review, we describe and discuss the mechanisms and consequences, both physiological and pathological, of MET proteolytic cleavages.

Effect of Microcurrent Wave Superposition on Cognitive Improvement in Alzheimer's Disease Mice Model (알츠하이머 질환 마우스에서 중첩주파수를 활용한 미세전류가 인지능력 개선에 미치는 효과)

  • Kim, Min Jeong;Lee, Ah Young;Cho, Dong Shik;Cho, Eun Ju
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.5
    • /
    • pp.241-251
    • /
    • 2019
  • In the present study, we investigated the effect of microcurrent against cognitive impairment in Alzheimer's disease (AD) mice model. The cognitive impairment was induced by intracerebroventricularly injection of amyloid beta ($A{\beta}$) to ICR mouse brain, and four kinds of micorocurrent wave were applied to AD mice. We observed the improved cognitive ability in microcurrent-applied AD mice through novel object recognition test and Morris water maze test, compared to $A{\beta}$-injected control group. The contents of malondialdehyde generated by $A{\beta}$ in the brain were also reduced by microcurrent application. These effects of microcurrent were related to the modulation of $A{\beta}$ producing and brain-derived neurotrophic factor (BDNF). Microcurrent down-regulated ${\beta}$-secretase, presenilin 1, and presenilin 2 which were related amyloidogenic pathway, and up-regulated human brain-derived neurotrophic factor in the mice brain, especially Wave4 group [STEP FORM wave form (0, 1.5, 3, 5V), wave superposition]. These results suggest that microcurrent application could provide help for improvement learning and memory ability, at least partly.

Enhancing the Anti-cancer Activity of Non-steroidal Anti-inflammatory Drug and Down-regulation of Cancer Stemness-related Markers in Human Cancer Cells by DAPT and MHY2245 (DAPT 및 MHY2245의 비스테로이드소염제(NSAID)의 항암 활성 증강 및 종양줄기세포관련 표지자 발현 감소 활성에 대한 분자적 기전)

  • Moon, Hyun-Jung;Kang, Chi-Dug;Kim, Sun-Hee
    • Journal of Life Science
    • /
    • v.32 no.3
    • /
    • pp.210-221
    • /
    • 2022
  • This study investigated the mechanisms underlying the anti-cancer effects of non-steroidal anti-inflammatory drugs (NSAIDs) in human cancer cells in combination with either N-[N-(3, 5-difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester (DAPT), a γ-secretase inhibitor, or MHY2245, a new synthetic sirtuin 1 inhibitor. The results showed both DAPT and MHY2245 as novel chemosensitizers of human colon cancer KM12 and human hepatocellular carcinoma SNU475 cells to NSAIDs involving celecoxib and 2, 5-dimethyl celecoxib. The NSAID-induced cytotoxicity of these cells was significantly increased by DAPT and MHY2245 in a cyclooxygenase-2 independent manner. In addition, DAPT and MHY2245 reduced levels of p62, Notch1 intracellular domain, and multiple cancer stemness (CS)-related markers including Notch1, CD44, CD133, octamer-binding transcription factor 4, mutated p53 and c-Myc. However, the level of activating transcription factor 4 (ATF4) was enhanced, probably indicating the down-regulation of multiple CS-related markers by DAPT or MHY2245-mediated autophagy induction. Moreover, the NSAID-mediated reduction of p62/nuclear factor erythroid-derived 2-like 2 and CS-related marker proteins and the up-regulation of C/EBP homologous protein (CHOP)/ATF4 were accelerated by DAPT and MHY2245. As such, the combination of NSAID and either DAPT or MHY2245 resulted in higher cytotoxicity than NSAID alone by accelerating the down-regulation of multiple CS-related markers and PARP activation, indicating that both inhibitors promote NSAID-mediated autophagic cell death, possibly through the CHOP/ATF4 pathway. In conclusion, either combination strategy may be useful for the effective treatment of human cancer cells expressing CS-related markers.

Stereospecific Synthesis of the (2R,3S)- and (2R,3R)-3-Amino-2-hydroxy-4-phenylbutanoic Acids from D-Glucono-δ-lactone

  • Lee, Jin Hwan;Kim, Jin Hyo;Lee, Byong Won;Seo, Woo Duck;Yang, Min Suk;Park, Ki Hun
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.8
    • /
    • pp.1211-1218
    • /
    • 2006
  • The enantiomerically pure (2R,3S)- and (2R,3R)-3-amino-2-hydroxy-4-phenylbutanoic acids (AHPBA) 1 and 3 are readily obtained from D-glucono-a-lactone. Both AHPBAs are the structural key units of KMI derivatives which are the potent inhibitors of BACE 1 ($\beta$-secretase) and HIV protease. Additionally, the obtained AHPBAs 1 and 3 are converted to dipeptides of bestatin stereoisomers 2 and 4.