Browse > Article
http://dx.doi.org/10.5483/BMBRep.2019.52.4.024

Proteolytic cleavages of MET: the divide-and-conquer strategy of a receptor tyrosine kinase  

Fernandes, Marie (University of Lille, CNRS, Institut Pasteur de Lille)
Duplaquet, Leslie (University of Lille, CNRS, Institut Pasteur de Lille)
Tulasne, David (University of Lille, CNRS, Institut Pasteur de Lille)
Publication Information
BMB Reports / v.52, no.4, 2019 , pp. 239-249 More about this Journal
Abstract
Membrane-anchored full-length MET stimulated by its ligand HGF/SF induces various biological responses, including survival, growth, and invasion. This panel of responses, referred to invasive growth, is required for embryogenesis and tissue regeneration in adults. On the contrary, MET deregulation is associated with tumorigenesis in many kinds of cancer. In addition to its well-documented ligand-stimulated downstream signaling, the receptor can be cleaved by proteases such as secretases, caspases, and calpains. These cleavages are involved either in MET receptor inactivation or, more interestingly, in generating active fragments that can modify cell fate. For instance, MET fragments can promote cell death or invasion. Given a large number of proteases capable of cleaving MET, this receptor appears as a prototype of proteolytic-cleavage-regulated receptor tyrosine kinase. In this review, we describe and discuss the mechanisms and consequences, both physiological and pathological, of MET proteolytic cleavages.
Keywords
Apoptosis; Calpain; Caspase; Hepatocyte growth factor; MET; Necrosis; Protease; Proteolytic cleavages; Receptor tyrosine kinase; Secretase;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Wang H, Boussouar A, Mazelin L et al (2018) The Proto-oncogene c-Kit Inhibits Tumor Growth by Behaving as a Dependence Receptor. Mol Cell 72, 413-425 e415   DOI
2 Genevois AL, Ichim G, Coissieux MM et al (2013) Dependence receptor TrkC is a putative colon cancer tumor suppressor. Proc Natl Acad Sci U S A 110, 3017-3022   DOI
3 Luo Y, Kaz AM, Kanngurn S et al (2013) NTRK3 is a potential tumor suppressor gene commonly inactivated by epigenetic mechanisms in colorectal cancer. PLoS Genet 9, e1003552   DOI
4 De Oliveira AT, Matos D, Logullo AF et al (2009) MET Is highly expressed in advanced stages of colorectal cancer and indicates worse prognosis and mortality. Anticancer Res 29, 4807-4811
5 Petrelli A, Circosta P, Granziero L et al (2006) Ab-induced ectodomain shedding mediates hepatocyte growth factor receptor down-regulation and hampers biological activity. Proc Natl Acad Sci U S A 103, 5090-5095   DOI
6 Pacchiana G, Chiriaco C, Stella MC et al (2010) Monovalency unleashes the full therapeutic potential of the DN-30 anti-Met antibody. J Biol Chem 285, 36149-36157   DOI
7 Cignetto S, Modica C, Chiriaco C et al (2016) Dual Constant Domain-Fab: A novel strategy to improve half-life and potency of a Met therapeutic antibody. Mol Oncol 10, 938-948   DOI
8 Vigna E, Chiriaco C, Cignetto S et al (2015) Inhibition of ligand-independent constitutive activation of the Met oncogenic receptor by the engineered chemically-modified antibody DN30. Mol Oncol 9, 1760-1772   DOI
9 Vigna E, Pacchiana G, Chiriaco C et al (2014) Targeted therapy by gene transfer of a monovalent antibody fragment against the Met oncogenic receptor. J Mol Med (Berl) 92, 65-76   DOI
10 Birchmeier C, Birchmeier W, Gherardi E and Vande Woude GF (2003) Met, metastasis, motility and more. Nat Rev Mol Cell Biol 4, 915-925   DOI
11 Bladt F, Riethmacher D, Isenmann S, Aguzzi A and Birchmeier C (1995) Essential role for the c-met receptor in the migration of myogenic precursor cells into the limb bud. Nature 376, 768-771   DOI
12 Schmidt C, Bladt F, Goedecke S et al (1995) Scatter factor/hepatocyte growth factor is essential for liver development. Nature 373, 699-702   DOI
13 Uehara Y, Minowa O, Mori C et al (1995) Placental defect and embryonic lethality in mice lacking hepatocyte growth factor/scatter factor. Nature 373, 702-705   DOI
14 Maina F, Hilton MC, Ponzetto C, Davies AM and Klein R (1997) Met receptor signaling is required for sensory nerve development and HGF promotes axonal growth and survival of sensory neurons. Genes Dev 11, 3341-3350   DOI
15 Chmielowiec J, Borowiak M, Morkel M et al (2007) c-Met is essential for wound healing in the skin. J Cell Biol 177, 151-162   DOI
16 Borowiak M, Garratt AN, Wustefeld T, Strehle M, Trautwein C and Birchmeier C (2004) Met provides essential signals for liver regeneration. Proc Natl Acad Sci U S A 101, 10608-10613   DOI
17 Huh CG, Factor VM, Sanchez A, Uchida K, Conner EA and Thorgeirsson SS (2004) Hepatocyte growth factor/c-met signaling pathway is required for efficient liver regeneration and repair. Proc Natl Acad Sci U S A 101, 4477-4482   DOI
18 Athauda G, Giubellino A, Coleman JA et al (2006) c-Met ectodomain shedding rate correlates with malignant potential. Clin Cancer Res 12(14 Pt 1), 4154-4162   DOI
19 Basilico C, Modica C, Maione F, Vigna E and Comoglio PM (2018) Targeting the MET oncogene by concomitant inhibition of receptor and ligand via an antibody-"decoy" strategy. Int J Cancer [Epub ahead of print]
20 Perk LR, Stigter-van Walsum M, Visser GW et al (2008) Quantitative PET imaging of Met-expressing human cancer xenografts with 89Zr-labelled monoclonal antibody DN30. Eur J Nucl Med Mol Imaging 35, 1857-1867   DOI
21 Fu L, Guo W, Liu B et al (2013) Shedding of c-Met ectodomain correlates with c-Met expression in non-small cell lung cancer. Biomarkers 18, 126-135   DOI
22 Lv H, Shan B, Tian Z, Li Y, Zhang Y and Wen S (2015) Soluble c-Met is a reliable and sensitive marker to detect c-Met expression level in lung cancer. Biomed Res Int 2015, 626578   DOI
23 Engelman JA, Zejnullahu K, Mitsudomi T et al (2007) MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. Science 316, 1039-1043   DOI
24 Peschard P, Fournier TM, Lamorte L et al (2001) Mutation of the c-Cbl TKB domain binding site on the Met receptor tyrosine kinase converts it into a transforming protein. Mol Cell 8, 995-1004   DOI
25 Siebel C and Lendahl U (2017) Notch Signaling in Development, Tissue Homeostasis, and Disease. Physiol Rev 97, 1235-1294   DOI
26 Schiering N, Knapp S, Marconi M et al (2003) Crystal structure of the tyrosine kinase domain of the hepatocyte growth factor receptor c-Met and its complex with the microbial alkaloid K-252a. Proc Natl Acad Sci U S A 100, 12654-12659   DOI
27 Longati P, Bardelli A, Ponzetto C, Naldini L and Comoglio PM (1994) Tyrosines1234-1235 are critical for activation of the tyrosine kinase encoded by the MET protooncogene (HGF receptor). Oncogene 9, 49-57
28 Ponzetto C, Bardelli A, Zhen Z et al (1994) A multifunctional docking site mediates signaling and transformation by the hepatocyte growth factor/scatter factor receptor family. Cell 77, 261-271   DOI
29 Maina F, Casagranda F, Audero E et al (1996) Uncoupling of Grb2 from the Met receptor in vivo reveals complex roles in muscle development. Cell 87, 531-542   DOI
30 Hashigasako A, Machide M, Nakamura T and Matsumoto K (2004) Bi-directional regulation of Ser-985 phosphorylation of c-met via protein kinase C and protein phosphatase 2A involves c-Met activation and cellular responsiveness to hepatocyte growth factor. J Biol Chem 279, 26445-26452   DOI
31 Duplaquet L, Kherrouche Z, Baldacci S et al (2018) The multiple paths towards MET receptor addiction in cancer. Oncogene 37, 3200-3215   DOI
32 Olivero M, Rizzo M, Madeddu R et al (1996) Overexpression and activation of hepatocyte growth factor/scatter factor in human non-small-cell lung carcinomas. Br J Cancer 74, 1862-1868   DOI
33 Tuck AB, Park M, Sterns EE, Boag A and Elliott BE (1996) Coexpression of hepatocyte growth factor and receptor (Met) in human breast carcinoma. Am J Pathol 148, 225-232
34 Ichimura E, Maeshima A, Nakajima T and Nakamura T (1996) Expression of c-met/HGF receptor in human non-small cell lung carcinomas in vitro and in vivo and its prognostic significance. Jpn J Cancer Res 87, 1063-1069   DOI
35 Wislez M, Rabbe N and Marchal J (2003) Hepatocyte growth factor production by neutrophils infiltrating bronchioloalveolar subtype pulmonary adenocarcinoma: role in tumor progression and death. Cancer Res 63, 1405-1412
36 Park S, Choi YL, Sung CO et al (2012) High MET copy number and MET overexpression: poor outcome in non-small cell lung cancer patients. Histol Histopathol 27, 197-207
37 Koochekpour S, Jeffers M, Rulong S, et al (1997) Met and hepatocyte growth factor/scatter factor expression in human gliomas. Cancer Res 57, 5391-5398
38 Ferracini R, Di Renzo MF, Scotlandi K et al (1995) The Met/HGF receptor is over-expressed in human osteosarcomas and is activated by either a paracrine or an autocrine circuit. Oncogene 10, 739-749
39 Ponzetto C, Giordano S, Peverali F et al (1991) c-met is amplified but not mutated in a cell line with an activated met tyrosine kinase. Oncogene 6, 553-559
40 Watermann I, Schmitt B and Stellmacher F (2015) Improved diagnostics targeting c-MET in non-small cell lung cancer: expression, amplification and activation? Diagn Pathol 10, 130   DOI
41 Yang Y, Wu N, Shen J et al (2016) MET overexpression and amplification define a distinct molecular subgroup for targeted therapies in gastric cancer. Gastric Cancer 19, 778-788   DOI
42 Kopitz C, Gerg M, Bandapalli OR et al (2007) Tissue inhibitor of metalloproteinases-1 promotes liver metastasis by induction of hepatocyte growth factor signaling. Cancer Res 67, 8615-8623   DOI
43 Sattler M, Reddy MM, Hasina R, Gangadhar T and Salgia R (2011) The role of the c-Met pathway in lung cancer and the potential for targeted therapy. Ther Adv Med Oncol 3, 171-184   DOI
44 Krishnaswamy S, Kanteti R, Duke-Cohan JS et al (2009) Ethnic differences and functional analysis of MET mutations in lung cancer. Clin Cancer Res 15, 5714-5723   DOI
45 Prat M, Crepaldi T, Gandino L, Giordano S, Longati P and Comoglio P (1991) C-terminal truncated forms of Met, the hepatocyte growth factor receptor. Mol Cell Biol 11, 5954-5962   DOI
46 Galvani AP, Cristiani C, Carpinelli P, Landonio A and Bertolero F (1995) Suramin modulates cellular levels of hepatocyte growth factor receptor by inducing shedding of a soluble form. Biochem Pharmacol 50, 959-966   DOI
47 Jeffers M, Taylor GA, Weidner KM, Omura S and Vande-Woude GF (1997) Degradation of the Met tyrosine kinase receptor by the ubiquitin-proteasome pathway. Mol Cell Biol 17, 799-808   DOI
48 Schelter F, Kobuch J, Moss ML et al (2010) A disintegrin and metalloproteinase-10 (ADAM-10) mediates DN30 antibody-induced shedding of the met surface receptor. J Biol Chem 285, 26335-26340   DOI
49 Wajih N, Walter J and Sane DC (2002) Vascular origin of a soluble truncated form of the hepatocyte growth factor receptor (c-met). Circ Res 90, 46-52   DOI
50 Foveau B, Ancot F and Leroy C (2009) Downregulation of the Met Receptor Tyrosine Kinase by Presenilindependent Regulated Intramembrane Proteolysis. Mol Biol Cell 20, 2494-2506
51 Ancot F, Leroy C, Muharram G et al (2012) Shedding-Generated Met Receptor Fragments can be Routed to Either the Proteasomal or the Lysosomal Degradation Pathway. Traffic 13, 1261-1272   DOI
52 Baldacci S, Mazieres J, Tomasini P et al (2017) Outcome of EGFR-mutated NSCLC patients with MET-driven resistance to EGFR tyrosine kinase inhibitors. Oncotarget 8, 105103-105114   DOI
53 McNeil BK, Sorbellini M and Grubb RL 3rd et al (2014) Preliminary evaluation of urinary soluble Met as a biomarker for urothelial carcinoma of the bladder. J Transl Med 12, 199   DOI
54 Miller MA, Meyer AS and Beste MT (2013) ADAM-10 and -17 regulate endometriotic cell migration via concerted ligand and receptor shedding feedback on kinase signaling. Proc Natl Acad Sci U S A 110, E2074-2083   DOI
55 Trusolino L, Bertotti A and Comoglio PM (2010) MET signalling: principles and functions in development, organ regeneration and cancer. Nat Rev Mol Cell Biol 11, 834-848   DOI
56 Copin MC, Lesaffre M, Berbon M et al (2016) High-MET status in non-small cell lung tumors correlates with receptor phosphorylation but not with the serum level of soluble form. Lung Cancer 101, 59-67   DOI
57 Michieli P, Mazzone M, Basilico C et al (2004) Targeting the tumor and its microenvironment by a dual-function decoy Met receptor. Cancer Cell 6, 61-73   DOI
58 Tulasne D, Deheuninck J, Lourenco FC et al (2004) Proapoptotic function of the MET tyrosine kinase receptor through caspase cleavage. Mol Cell Biol 24, 10328-10339   DOI
59 Yun B, Lee H, Ghosh M et al (2014) Serine hydrolase inhibitors block necrotic cell death by preventing calcium overload of the mitochondria and permeability transition pore formation. J Biol Chem 289, 1491-1504   DOI
60 Francis RJ, Kotecha S and Hallett MB (2013) $Ca^{2+}$ activation of cytosolic calpain induces the transition from apoptosis to necrosis in neutrophils with externalized phosphatidylserine. J Leukoc Biol 93, 95-100   DOI
61 Montagne R, Berbon M, Doublet L et al (2015) Necrosisand apoptosis-related Met cleavages have divergent functional consequences. Cell Death Dis 6, e1769   DOI
62 Billger M, Wallin M and Karlsson JO (1988) Proteolysis of tubulin and microtubule-associated proteins 1 and 2 by calpain I and II. Difference in sensitivity of assembled and disassembled microtubules. Cell Calcium 9, 33-44   DOI
63 Czogalla A and Sikorski AF (2005) Spectrin and calpain: a 'target' and a 'sniper' in the pathology of neuronal cells. Cell Mol Life Sci 62, 1913-1924   DOI
64 Kelly BL, Vassar R and Ferreira A (2005) Beta-amyloidinduced dynamin 1 depletion in hippocampal neurons. A potential mechanism for early cognitive decline in Alzheimer disease. J Biol Chem 280, 31746-31753   DOI
65 Cortot AB, Kherrouche Z, Descarpentries C et al (2017) Exon 14 deleted MET receptor as a new biomarker and target in cancers. J Natl Cancer Inst 109
66 Lee JH, Han SU, Cho H et al (2009) A novel germ line juxtamembrane Met mutation in human gastric cancer. Oncogene 19, 4947-4953   DOI
67 Ma PC, Kijima T, Maulik G et al (2003) c-MET mutational analysis in small cell lung cancer: novel juxtamembrane domain mutations regulating cytoskeletal functions. Cancer Res 63, 6272-6281
68 Foveau B, Leroy C, Ancot F et al (2007) Amplification of apoptosis through sequential caspase cleavage of the MET tyrosine kinase receptor. Cell Death Differ 14, 752-764   DOI
69 Lefebvre J, Muharram G, Leroy C et al (2013) Caspasegenerated fragment of the Met receptor favors apoptosis via the intrinsic pathway independently of its tyrosine kinase activity. Cell Death Dis 4, e871   DOI
70 Mebratu YA, Leyva-Baca I and Wathelet MG (2017) Bik reduces hyperplastic cells by increasing Bak and activating DAPk1 to juxtapose ER and mitochondria. Nat Commun 8, 803   DOI
71 Deheuninck J, Goormachtigh G and Foveau B (2009) Phosphorylation of the MET receptor on juxtamembrane tyrosine residue 1001 inhibits its caspase-dependent cleavage. Cell Signal 21, 1455-1463   DOI
72 Ma J, Zou C and Guo L (2013) A novel death defying domain in met entraps the active site of caspase-3 and blocks apoptosis in hepatocytes. Hepatology 59, 2010-2021   DOI
73 Furlan A and Tulasne D (2013) How does met regulate the survival/apoptosis balance? Hepatology 60, 1108-1109   DOI
74 Peschard P, Ishiyama N, Lin T, Lipkowitz S and Park M (2004) A conserved DpYR motif in the juxtamembrane domain of the Met receptor family forms an atypical c-Cbl/Cbl-b tyrosine kinase binding domain binding site required for suppression of oncogenic activation. J Biol Chem 279, 29565-29571   DOI
75 Deheuninck J, Foveau B, Goormachtigh G et al (2008) Caspase cleavage of the MET receptor generates an HGF interfering fragment. Biochem Biophys Res Commun 367, 573-577   DOI
76 Bredesen DE, Mehlen P and Rabizadeh S (2005) Receptors that mediate cellular dependence. Cell Death Differ 12, 1031-1043   DOI
77 Zaffaroni D, Spinola M, Galvan A et al (2005) Met proto-oncogene juxtamembrane rare variations in mouse and humans: differential effects of Arg and Cys alleles on mouse lung tumorigenesis. Oncogene 24, 1084-1090   DOI
78 Tyner JW, Fletcher LB, Wang EQ et al (2010) MET receptor sequence variants R970C and T992I lack transforming capacity. Cancer Res 70, 6233-6237   DOI
79 Shieh JM, Tang YA, Yang TH et al (2013) Lack of association of C-Met-N375S sequence variant with lung cancer susceptibility and prognosis. Int J Med Sci 10, 988-994   DOI
80 Boland JM, Jang JS, Li J et al (2013) MET and EGFR mutations identified in ALK-rearranged pulmonary adenocarcinoma: molecular analysis of 25 ALK-positive cases. J Thorac Oncol 8, 574-581   DOI
81 Montagne R, Baranzelli A, Muharram G et al (2017) MET receptor variant R970C favors calpain-dependent generation of a fragment promoting epithelial cell scattering. Oncotarget 8, 11268-11283   DOI
82 Merilahti JAM and Elenius K (2019) Gamma-secretasedependent signaling of receptor tyrosine kinases. Oncogene 38, 151-163   DOI
83 Matteucci E, Bendinelli P and Desiderio MA (2009) Nuclear localization of active HGF receptor Met in aggressive MDA-MB231 breast carcinoma cells. Carcinogenesis 30, 937-945   DOI
84 Chaudhary SC, Cho MG, Nguyen TT, Park KS, Kwon MH and Lee JH (2014) A putative pH-dependent nuclear localization signal in the juxtamembrane region of c-Met. Exp Mol Med 46, e119   DOI
85 Tauszig-Delamasure S, Yu LY, Cabrera JR et al (2007) The TrkC receptor induces apoptosis when the dependence receptor notion meets the neurotrophin paradigm. Proc Natl Acad Sci U S A 104, 13361-13366   DOI
86 Halestrap AP (2010) A pore way to die: the role of mitochondria in reperfusion injury and cardioprotection. Biochem Soc Trans 38, 841-860   DOI
87 Negulescu AM and Mehlen P (2018) Dependence receptors - the dark side awakens. FEBS J 285, 3909-3924   DOI
88 Ichim G, Genevois AL, Menard M et al (2013) The Dependence Receptor TrkC Triggers Mitochondria-Dependent Apoptosis upon Cobra-1 Recruitment. Mol Cell 51, 632-646   DOI
89 Menard M, Costechareyre C, Ichim G et al (2018) Hey1-and p53-dependent TrkC proapoptotic activity controls neuroblastoma growth. PLoS Biol 16, e2002912   DOI
90 Bordeaux MC, Forcet C, Granger L et al (2000) The RET proto-oncogene induces apoptosis: a novel mechanism for Hirschsprung disease. EMBO J 19, 4056-4063   DOI