• Title/Summary/Keyword: Secretase

Search Result 81, Processing Time 0.032 seconds

[ $\beta$ ]-Secretase (BACE1) Inhibitors from Pomegranate (Punica granatum) Husk

  • Kwak Hye-Min;Jeon So-Young;Sohng Bang-Ho;Kim Jong-Guk;Lee Jin-Man;Lee Kyung-Bok;Jeong Hyun­Hee;Hur Jong-Moon;Kang Young-Hwa;Song Kyung-Sik
    • Archives of Pharmacal Research
    • /
    • v.28 no.12
    • /
    • pp.1328-1332
    • /
    • 2005
  • In the course of screening for anti-dementia agents from natural products, two $\beta$-secretase (BACE1) inhibitors were isolated from the husk of pomegranate (Punica granatum) by activity-guided purification. They were identified as ellagic acid and punicalagin with $IC_{50}$ values of 3.9 $\times$$10^{-6}$ and 4.1$\times$$10^{-7}$ M and Ki values of 2.4$\times$$10^{-5}$and 5.9$\times$$10^{-7}$ M, respectively. The compounds were non-competitive inhibitors with a substrate in the Dixon plot. Ellagic acid and punicalagin were less inhibitory to $\alpha$-secretase (TACE) and other serine proteases such as chymotrypsin, trypsin, and elastase, thus indicating that they were relatively specific inhibitors of BACE1.

Effect of 42 amino acid long amyloid-β peptides on Arabidopsis plants

  • Lee, HanGyeol;Kim, Ji Woo;Jeong, Sangyun;An, Jungeun;Kim, Young-Cheon;Ryu, Hojin;Lee, Jeong Hwan
    • Journal of Plant Biotechnology
    • /
    • v.47 no.4
    • /
    • pp.283-288
    • /
    • 2020
  • Although the evolution of Arabidopsis thaliana and humans diverged approximately 1.6 billion years ago, recent studies have demonstrated that protein function and cellular processes involved in disease response remain remarkably conserved. Particularly, γ-secretase, a multisubunit protein complex that participates in intramembrane proteolysis (RIP) regulation, is also known to mediate the cleavage of more than 80 substrates including the amyloid precursor protein (APP) and the Notch receptor. Although the genes (PS1/2, APH-1, PEN-2, and NCT) coding for the γ-secretase complex components are present in plant genomes, their function remains largely uncharacterized. Given that the deposition of 42 amino acid long amyloid-β peptides (hAβ42) is thought to be one of the main causes of Alzheimer's disease, we aimed to examine the physiological effects of hAβ42 peptides on plants. Interestingly, we found that Arabidopsis protoplast death increased after 24 h of exposure to 3 or 5 µM hAβ42 peptides. Furthermore, transgenic Arabidopsis plants overexpressing the hAβ42 gene exhibited changes in primary root length and silique phyllotaxy. Taken together, our results demonstrate that hAβ42 peptides, a metazoan protein, significantly affect Arabidopsis protoplast viability and plant morphology.

Characterization and β-secretase Inhibitory Activity of Water-soluble Polysaccharides Isolated from Phellinus linteus Fruiting Body (상황버섯 자실체로부터 분리된 수용성 다당류의 특성 분석 및 이의 베타 시크리타아제 활성 저해효과)

  • Jo, Hang Soo;Choi, Doo Jin;Chung, Mi Ja;Park, Jae Kweon;Park, Yong Il
    • The Korean Journal of Mycology
    • /
    • v.40 no.4
    • /
    • pp.229-234
    • /
    • 2012
  • A key molecule in the pathogenesis of Alzheimer's disease (AD) is the ${\beta}$-amyloid peptide ($A{\beta}$) generated by ${\beta}$-secretase activity, an aspartic protease. This study was designed to evaluate inhibitory effect of the high-molecular weight water-soluble polysaccharides (Et-P) isolated and purified from Phellinus linteus fruiting body on ${\beta}$-secretase activity. The Et-P was purified from the hot water extract of Phellinus linteus fruiting body mainly by 75% ethanol precipitation and DEAE-Cellulose column chromatography. From the DEAE-Cellulose chromato-gram and molecular weight analysis, the Et-P was shown to be a mixture of three polysaccharides with molecular mass of 1,629, 1,294, and 21 kDa, respectively. The monosaccharide composition of Et-P was determined to be glu-cose, galactose, and mannose as major sugars, glucose being the most prominent one (48% in mole percentage). The elemental analysis and FT-IR analysis suggested that Et-P is typical polysaccharides having at least partially ${\beta}$-linkages and possible existing as complex with phenolic compounds. The laminarinase digestion and HPAEC-PAD analysis suggested that Et-P is a variant of beta-(1,3)-glucans. The Et-P showed DPPH radical scavenging activity and, especially, a significant inhibitory activity on ${\beta}$-secreatase activity (48% inhibitin at 100 ${\mu}g/mL$), suggesting that they may inhibit the formation of $A{\beta}$ which is the major causative of Alzheimer's disease. The results of this study suggest that the water soluble polysaccharides of Phellinus linteus fruiting body can be a potent material for the development of preventive or therapeutic agents for AD.

In Vitro Screening for Anti-Dementia Activities of Seaweed Extracts (해조류 추출물의 In Vitro 항치매 활성)

  • Son, Hyun Jung;Um, Min Young;Kim, Inho;Cho, Suengmok;Han, Daeseok;Lee, Changho
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.45 no.7
    • /
    • pp.966-972
    • /
    • 2016
  • We investigated that methanolic extracts of 20 kinds of seaweeds from Jeju Island for their antioxidant activities, acetylcholinesterase and ${\beta}$-secretase inhibitory activities, and neuronal survival in order to evaluate their potentials as anti-dementia agents. Ecklonia cava extracts had the highest total polyphenol content among the 20 seaweed extracts. The antioxidant activity of seaweed extracts was measured by using 2,2'-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) assay. It was found that Ecklonia kurome extracts had the highest ABTS scavenging activity ($IC_{50}=0.07{\pm}0.01mg/mL$). As a result, Ecklonia cava, Ecklonia kurome, and Myelophycus simplex extracts were found to be the most effective in terms of acetylcholinesterase inhibitory activity. In the ${\beta}$-secretase activity assay, Ecklonia cava and Ecklonia kurome extracts were effectively inhibited ($84.41{\pm}1.70%$ and $81.17{\pm}2.43%$, respectively). As expected, neuronal cell death induced by $H_2O_2$ in SH-SY5Y cells was diminished by Ecklonia cava, Ecklonia kurome, and Sargassum yezoense extracts. Taken together, these results showed that Ecklonia cava extract has potential anti-dementia activity, which suggests that it might provide an effective strategy for improving dementia.

Glycerides from the Aerial Parts of Garland (Chrysanthemum coronarium L.) and Their Inhibitory Effects on ACAT, DGAT, FPTase, and $\beta$-Secretase

  • Song, Myoung-Chong;Yang, Hye-Joung;Cho, Jin-Gyeong;Chung, In-Sik;Kwon, Byoung-Mog;Kim, Dae-Keun;Baek, Nam-In
    • Food Science and Biotechnology
    • /
    • v.18 no.1
    • /
    • pp.95-102
    • /
    • 2009
  • The aerial parts of garland (Chrysanthemum coronarium L.) were extracted in 80% aqueous methanol (MeOH) and the concentrated extract was then partitioned using ethyl acetate (EtOAc), n-butanol (n-BuOH), and $H_2O$, successively. EtOAc and n-BuOH fractions resulted in 4 glycerides with the application of octadecyl silica gel and silica gel column chromatography. The chemical structures of the glycerides were determined using several spectroscopic methods, including nuclear magnetic resonance (NMR) and mass spectrometry (MS) as (2S)-1-O-palmitoyl-sn-glycerol (1), (2S)-1-O-oleoyl-2-O-oleoyl- 3-O-$\beta$-D-galactopyranosyl-sn-glycerol (2), (2S)-1-O-palmitoyl-2-O-linoleoyl-3-O-phosphorouscholine-sn-glycerol (3), and (2S)-1-O-linolenoyl-2-O-palmitoyl-3-O-[$\alpha$-D-galactopyrasyl-($1{\rightarrow}6$)-$\beta$-D-galactopyranosyl]-sn-glycerol (4). The free fatty acids of these glycerides were determined with gas chromatography (GC)-MS analysis following alkaline hydrolysis and methylation. These glycerides demonstrated an inhibitory effect on acyl-CoA: cholesterol acyltransferase (ACAT, compound 1: $45.6{\pm}0.2%$ at $100{\mu}g/mL$), diacylglycerol acyltransferase (DGAT, compound 1: $59.1{\pm}0.1%$ at $25{\mu}g/mL$), farnesyl protein transferase (FPTase, compound 2: $98.0{\pm}0.1%$; compound 3: $55.2{\pm}0.1%$ at $100{\mu}g/mL$), and $\beta$-secretase ($IC_{50}$, compound 4: $2.6{\mu}g/mL$) activity. This paper is the first report on the isolation of these glycerides from garland and their inhibitory activity on ACAT, DGAT, FPTase, and $\beta$-secretase.

Bacteroides fragilis Toxin Induces Cleavage and Proteasome Degradation of E-cadherin in Human Breast Cancer Cell Lines BT-474 and MCF7 (인간 유방암 세포주 BT-474와 MCF7에서 Bacteroides fragilis Toxin에 의한 E-cadherin 분절과 프로테아좀에 의한 분해)

  • Da-Hye KANG;Sang-Hyeon YOO;Ju-Eun HONG;Ki-Jong RHEE
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.55 no.1
    • /
    • pp.37-44
    • /
    • 2023
  • Enterotoxigenic Bacteroides fragilis (ETBF) has been reported to promote colitis and colon cancer through the secretion of B. fragilis toxin (BFT), a zinc-dependent metalloprotease. In colonic epithelial cells, BFT induces the cleavage of E-cadherin into the 80 kDa ectodomain and the 33 kDa membrane-bound intracellular domain. The resulting membrane-tethered fragment is then cleaved by γ-secretase forming the 28 kDa E-cadherin intracellular fragment. The 28 kDa cytoplasmic fragment is then degraded by an unknown mechanism. In this study, we found that the 28 kDa E-cadherin intracellular fragment was degraded by the proteasome complex. In addition, we found that this sequential E-cadherin cleavage mechanism is found not only in colonic epithelial cells but also in the human breast cancer cell line, BT-474. Finally, we report that staurosporine also induces E-cadherin cleavage in the human breast cancer cell line, MCF7, through γ-secretase. However, further degradation of the 28 kDa E-cadherin intracellular domain is not dependent on the proteasome complex. These results suggest that the BFT-induced E-cadherin cleavage mechanism is conserved in both colonic and breast cancer cells. This observation indicates that ETBF may also play a role in the carcinogenesis of tissues other than the colon.

Docking and Quantitative Structure Activity Relationship studies of Acyl Guanidines as β-Secretase (BACE1) Inhibitor

  • Hwang, Yu Jin;Im, Chaeuk
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.7
    • /
    • pp.2065-2071
    • /
    • 2014
  • ${\beta}$-Secretase (beta-amyloid converting enzyme 1 [BACE1]) is involved in the first and rate-limiting step of ${\beta}$-amyloid ($A{\beta}$) peptides production, which leads to the pathogenesis of Alzheimer's disease(AD). Therefore, inhibition of BACE1 activity has become an efficient approach for the treatment of AD. Ligand-based and docking-based 3D-quantitative structure-activity relationship (3D-QSAR) studies of acyl guanidine analogues were performed with comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) to obtain insights for designing novel potent BACE1 inhibitors. We obtained highly reliable and predictive CoMSIA models with a cross-validated $q^2$ value of 0.725 and a predictive coefficient $r{^2}_{pred}$ value of 0.956. CoMSIA contour maps showed the structural requirements for potent activity. 3D-QSAR analysis suggested that an acyl guanidine and an amide group in the $R_6$ substituent would be important moieties for potent activity. Moreover, the introduction of small hydrophobic groups in the phenyl ring and hydrogen bond donor groups in 3,5-dichlorophenyl ring could increase biological activity.

The Acetylcholinesterase Inhibitory Activity of the EtOH Extract of Chaenomelis Fructus and its effects on the Metabolism of Amyloid Precursor Protein in Neuroblastoma Cells (모과 에탄올 추출물의 아세틸콜린에스테라제 저해활성과 신경세포에서 아밀로이드 전구단백질의 대사에 미치는 영향)

  • Kim, Ju Eun;Jo, Youn Jeong;Leem, Jae Yoon
    • Korean Journal of Pharmacognosy
    • /
    • v.46 no.4
    • /
    • pp.327-333
    • /
    • 2015
  • Alzheimer's disease (AD) is a progressive neurodegenerative disorder symptomatically characterized by impairment in memory and cognitive abilities. AD is characterized pathologically by the deposition of ${\beta}$-amyloid ($A{\beta}$) peptides of 40-42 residues, which are generated by processing of amyloid precursor protein (APP). $A{\beta}$ has been believed to be neurotoxic and now is also considered to have a role on the mechanism of memory dysfunction. In this study, we tested that EtOH extract of the fruits of Chaenomeles sinensis Koehne (CSE) affects on the processing of APP from the APPswe over-expressing Neuro2a cell line. We found that CSE increased over 2 folds of the $sAPP{\alpha}$ secretion level, a metabolite of ${\alpha}$-secretase. We showed that CSE reduced the secretion level of $A{\beta}42$ and $A{\beta}40$ by down regulation of ${\beta}$-secretase (BACE) without cytotoxicity. Furthermore, we found that CSE inhibited BACE and acetylcholinesterase activity in vitro. We suggest that Chaenomelis Fructus may be an useful source to develop a herbal medicine for AD.

Justicidin A Reduces β-Amyloid via Inhibiting Endocytosis of β-Amyloid Precursor Protein

  • Chun, Yoon Sun;Kwon, Oh-Hoon;Oh, Hyun Geun;Cho, Yoon Young;Yang, Hyun Ok;Chung, Sungkwon
    • Biomolecules & Therapeutics
    • /
    • v.27 no.3
    • /
    • pp.276-282
    • /
    • 2019
  • ${\beta}$-amyloid precursor protein (APP) can be cleaved by ${\alpha}$-, and ${\gamma}$-secretase at plasma membrane producing soluble ectodomain fragment ($sAPP{\alpha}$). Alternatively, following endocytosis, APP is cleaved by ${\beta}$-, and ${\gamma}$-secretase at early endosomes generating ${\beta}$-amyloid ($A{\beta}$), the main culprit in Alzheimer's disease (AD). Thus, APP endocytosis is critical for $A{\beta}$ production. Recently, we reported that Monsonia angustifolia, the indigenous vegetables consumed in Tanzania, improved cognitive function and decreased $A{\beta}$ production. In this study, we examined the underlying mechanism of justicidin A, the active compound of M. angustifolia, on $A{\beta}$ production. We found that justicidin A reduced endocytosis of APP, increasing $sAPP{\alpha}$ level, while decreasing $A{\beta}$ level in HeLa cells overexpressing human APP with the Swedish mutation. The effect of justicidin A on $A{\beta}$ production was blocked by endocytosis inhibitors, indicating that the decreased APP endocytosis by justicidin A is the underlying mechanism. Thus, justicidin A, the active compound of M. angustifolia, may be a novel agent for AD treatment.

HtrA2 Interacts with Aβ Peptide but Does Not Directly Alter Its Production or Degradation

  • Liu, Meng-Lu;Liu, Ming-Jie;Kim, Jin-Man;Kim, Hyeon-Jin;Kim, Jeong-Hak;Hong, Seong-Tshool
    • Molecules and Cells
    • /
    • v.20 no.1
    • /
    • pp.83-89
    • /
    • 2005
  • HtrA2/Omi is a mammalian mitochondrial serine protease homologous to the E. coli HtrA/DegP gene products. Recently, HtrA2/Omi was found to have a dual role in mammalian cells, acting as an apoptosis-inducing protein and being involved in maintenance of mitochondrial homeostasis. By screening a human brain cDNA library with $A{\beta}$ peptide as bait in a yeast two-hybrid system, we identified HtrA2/Omi as a binding partner of $A{\beta}$ peptide. The interaction between $A{\beta}$ peptide and HtrA2/Omi was confirmed by an immunoblot binding assay. The possible involvement of HtrA2/Omi in $A{\beta}$ peptide metabolism was investigated. In vitro peptide cleavage assays showed that HtrA2/Omi did not directly promote the production of $A{\beta}$ peptide at the ${\beta}/{\gamma}$-secretase level, or the degradation of $A{\beta}$ peptide. However, overexpression of HtrA2/Omi in K269 cells decreased the production of $A{\beta}40$ and $A{\beta}42$ by up to 30%. These results rule out the involvement of HtrA2/Omi in the etiology of Alzheimer's disease. However, the fact that overexpression of HtrA2/Omi reduces the generation of $A{\beta}40$ and $A{\beta}42$ suggests that it may play some positive role in mammalian cells.