DOI QR코드

DOI QR Code

Bacteroides fragilis Toxin Induces Cleavage and Proteasome Degradation of E-cadherin in Human Breast Cancer Cell Lines BT-474 and MCF7

인간 유방암 세포주 BT-474와 MCF7에서 Bacteroides fragilis Toxin에 의한 E-cadherin 분절과 프로테아좀에 의한 분해

  • Da-Hye KANG (Department of Biomedical Laboratory Science, College of Software and Digital Healthcare Convergence, Yonsei University MIRAE campus) ;
  • Sang-Hyeon YOO (Department of Biomedical Laboratory Science, College of Software and Digital Healthcare Convergence, Yonsei University MIRAE campus) ;
  • Ju-Eun HONG (Department of Biomedical Laboratory Science, College of Software and Digital Healthcare Convergence, Yonsei University MIRAE campus) ;
  • Ki-Jong RHEE (Department of Biomedical Laboratory Science, College of Software and Digital Healthcare Convergence, Yonsei University MIRAE campus)
  • 강다혜 (연세대학교 소프트웨어디지털헬스케어융합대학 임상병리학과) ;
  • 유상현 (연세대학교 소프트웨어디지털헬스케어융합대학 임상병리학과) ;
  • 홍주은 (연세대학교 소프트웨어디지털헬스케어융합대학 임상병리학과) ;
  • 이기종 (연세대학교 소프트웨어디지털헬스케어융합대학 임상병리학과)
  • Received : 2022.12.23
  • Accepted : 2022.12.29
  • Published : 2023.03.31

Abstract

Enterotoxigenic Bacteroides fragilis (ETBF) has been reported to promote colitis and colon cancer through the secretion of B. fragilis toxin (BFT), a zinc-dependent metalloprotease. In colonic epithelial cells, BFT induces the cleavage of E-cadherin into the 80 kDa ectodomain and the 33 kDa membrane-bound intracellular domain. The resulting membrane-tethered fragment is then cleaved by γ-secretase forming the 28 kDa E-cadherin intracellular fragment. The 28 kDa cytoplasmic fragment is then degraded by an unknown mechanism. In this study, we found that the 28 kDa E-cadherin intracellular fragment was degraded by the proteasome complex. In addition, we found that this sequential E-cadherin cleavage mechanism is found not only in colonic epithelial cells but also in the human breast cancer cell line, BT-474. Finally, we report that staurosporine also induces E-cadherin cleavage in the human breast cancer cell line, MCF7, through γ-secretase. However, further degradation of the 28 kDa E-cadherin intracellular domain is not dependent on the proteasome complex. These results suggest that the BFT-induced E-cadherin cleavage mechanism is conserved in both colonic and breast cancer cells. This observation indicates that ETBF may also play a role in the carcinogenesis of tissues other than the colon.

Enterotoxigenic Bacteroides fragilis (ETBF)는 염증성장 질환과 대장암을 유발하며 아연 의존성 metalloprotease인 B. fragilis toxin (BFT)를 분비한다. BFT는 epithelial cell의 E-cadherin을 80 kDa ectodomain과 33 kDa intracellular domain으로 분절을 유도한다. 생성된 E-cadherin intracellular domain은 순차적으로 γ-secretase에 의해 분절되어 28 kDa E-cadherin intracellular fragment은 아직까지 밝혀지지 않는 기작으로 분해된다. 본 연구에서는 BFT 유도 E-cadherin 분절로 인해 생성된 28 kDa E-cadherin intracellular fragment는 proteasome에 의해서 분해된다는 것을 확인하였다. 또한 BFT 유도 E-cadherin 분절 기작이 대장암 세포가 아닌 인간 유방암 세포주 BT-474 세포에서도 동일한 기작으로 일어남을 확인하였다. 마지막으로 staurosporine은 인간 유방암 세포주 MCF7 세포에서 E-cadherin의 분절을 유도하고 γ-secretase에 의한 E-cadherin intracellular domain의 분절이 일어났으나 proteasome에 의한 분해는 일어나지 않았다. 이러한 결과는 ETBF가 서식하는 대장이 아닌 유방에서도 BFT에 의한 E-cadherin 분절이 일어날 수 있으며 ETBF가 대장암 이외의 다른 암에도 관여할 수 있음을 시사한다.

Keywords

References

  1. Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L, Sargent M, et al. Diversity of the human intestinal microbial flora. Science. 2005;308:1635-1638. https://doi.org/10.1126/science.1110591 
  2. Pierce JV, Bernstein HD. Genomic diversity of enterotoxigenic strains of Bacteroides fragilis. PLoS One. 2016;11:e0158171. https://doi.org/10.1371/journal.pone.0158171 
  3. Hwang S, Gwon SY, Kim MS, Lee S, Rhee KJ. Bacteroides fragilis toxin induces IL-8 secretion in HT29/C1 cells through disruption of E-cadherin junctions. Immune Netw. 2013;13:213-217. https://doi.org/10.4110/in.2013.13.5.213 
  4. Lee CG, Hwang S, Gwon SY, Park C, Jo M, Hong JE, et al. Bacteroides fragilis toxin induces intestinal epithelial cell secretion of interleukin-8 by the E-cadherin/β-catenin/NF-κB dependent pathway. Biomedicines. 2022;10:827. https://doi.org/10.3390/biomedicines10040827 
  5. Goodwin AC, Destefano Shields CE, Wu S, Huso DL, Wu X, Murray-Stewart TR, et al. Polyamine catabolism contributes to enterotoxigenic Bacteroides fragilis-induced colon tumorigenesis. Proc Natl Acad Sci U S A. 2011;108:15354-15359. https://doi.org/10.1073/pnas.1010203108 
  6. Allen J, Hao S, Sears CL, Timp W. Epigenetic changes induced by Bacteroides fragilis toxin. Infect Immun. 2019;87:e00447-e00418. https://doi.org/10.1128/IAI.00447-18 
  7. Devaux CA, Mezouar S, Mege JL. The E-cadherin cleavage associated to pathogenic bacteria infections can favor bacterial invasion and transmigration, dysregulation of the immune response and cancer induction in humans. Front Microbiol. 2019;10:2598. https://doi.org/10.3389/fmicb.2019.02598 
  8. Koirala R, Priest AV, Yen CF, Cheah JS, Pannekoek WJ, Gloerich M, et al. Inside-out regulation of E-cadherin conformation and adhesion. Proc Natl Acad Sci U S A. 2021;118:e2104090118. https://doi.org/10.1073/pnas.2104090118 
  9. Troyanovsky SM. Adherens junction: the ensemble of specialized cadherin clusters. Trends Cell Biol. 2022. [Epub ahead of print]. doi: 10.1016/j.tcb.2022.08.007 
  10. Na TY, Schecterson L, Mendonsa AM, Gumbiner BM. The functional activity of E-cadherin controls tumor cell metastasis at multiple steps. Proc Natl Acad Sci U S A. 2020;117:5931-5937. https://doi.org/10.1073/pnas.1918167117 
  11. Damsky CH, Richa J, Solter D, Knudsen K, Buck CA. Identification and purification of a cell surface glycoprotein mediating intercellular adhesion in embryonic and adult tissue. Cell. 1983;34:455-466. https://doi.org/10.1016/0092-8674(83)90379-3 
  12. Yoo CB, Yun SM, Jo C, Koh YH. γ-Secretase-dependent cleavage of E-cadherin by staurosporine in breast cancer cells. Cell Commun Adhes. 2012;19:11-16. https://doi.org/10.3109/15419061.2012.665969 
  13. Hugo HJ, Wafai R, Blick T, Thompson EW, Newgreen DF. Staurosporine augments EGF-mediated EMT in PMC42-LA cells through actin depolymerisation, focal contact size reduction and Snail1 induction - a model for cross-modulation. BMC Cancer. 2009;9:235. https://doi.org/10.1186/1471-2407-9-235 
  14. Wu S, Rhee KJ, Zhang M, Franco A, Sears CL. Bacteroides fragilis toxin stimulates intestinal epithelial cell shedding and gamma-secretase-dependent E-cadherin cleavage. J Cell Sci. 2007;120(Pt 11):1944-1952. https://doi.org/10.1242/jcs.03455 Erratum in: J Cell Sci. 2007;120(Pt 20):3713. 
  15. Rios-Doria J, Day KC, Kuefer R, Rashid MG, Chinnaiyan AM, Rubin MA, et al. The role of calpain in the proteolytic cleavage of E-cadherin in prostate and mammary epithelial cells. J Biol Chem. 2003;278:1372-1379. https://doi.org/10.1074/jbc.M208772200 
  16. Grabowska MM, Day ML. Soluble E-cadherin: more than a symptom of disease. Front Biosci (Landmark Ed). 2012;17:1948-1964. https://doi.org/10.2741/4031 
  17. Bard JAM, Goodall EA, Greene ER, Jonsson E, Dong KC, Martin A. Structure and function of the 26S proteasome. Annu Rev Biochem. 2018;87:697-724. https://doi.org/10.1146/annurev-biochem-062917-011931 
  18. Rousseau A, Bertolotti A. Regulation of proteasome assembly and activity in health and disease. Nat Rev Mol Cell Biol. 2018;19: 697-712. https://doi.org/10.1038/s41580-018-0040-z 
  19. Hitchcock AL, Auld K, Gygi SP, Silver PA. A subset of membrane-associated proteins is ubiquitinated in response to mutations in the endoplasmic reticulum degradation machinery. Proc Natl Acad Sci U S A. 2003;100:12735-12740. https://doi.org/10.1073/pnas.2135500100 
  20. Asakura T, Yamaguchi N, Ohkawa K, Yoshida K. Proteasome inhibitor-resistant cells cause EMT-induction via suppression of E-cadherin by miR-200 and ZEB1. Int J Oncol. 2015;46:2251-2260. https://doi.org/10.3892/ijo.2015.2916 
  21. Yang JY, Zong CS, Xia W, Wei Y, Ali-Seyed M, Li Z, et al. MDM2 promotes cell motility and invasiveness by regulating E-cadherin degradation. Mol Cell Biol. 2006;26:7269-7282. https://doi.org/10.1128/MCB.00172-06 
  22. Kisselev AF, Callard A, Goldberg AL. Importance of the different proteolytic sites of the proteasome and the efficacy of inhibitors varies with the protein substrate. J Biol Chem. 2006;281:8582-8590. https://doi.org/10.1074/jbc.M509043200 
  23. Kortuem KM, Stewart AK. Carfilzomib. Blood. 2013;121:893-897. https://doi.org/10.1182/blood-2012-10-459883 
  24. Quaglio AEV, Grillo TG, De Oliveira ECS, Di Stasi LC, Sassaki LY. Gut microbiota, inflammatory bowel disease and colorectal cancer. World J Gastroenterol. 2022;28:4053-4060. https://doi.org/10.3748/wjg.v28.i30.4053 
  25. Wu S, Powell J, Mathioudakis N, Kane S, Fernandez E, Sears CL. Bacteroides fragilis enterotoxin induces intestinal epithelial cell secretion of interleukin-8 through mitogen-activated protein kinases and a tyrosine kinase-regulated nuclear factor-kappaB pathway. Infect Immun. 2004;72:5832-5839. https://doi.org/10.1128/IAI.72.10.5832-5839.2004 
  26. Park CH, Eun CS, Han DS. Intestinal microbiota, chronic inflammation, and colorectal cancer. Intest Res. 2018;16:338-345. https://doi.org/10.5217/ir.2018.16.3.338 
  27. Cao Y, Wang Z, Yan Y, Ji L, He J, Xuan B, et al. Enterotoxigenic Bacteroides fragilis promotes intestinal inflammation and malignancy by inhibiting exosome-packaged miR-149-3p. Gastroenterology. 2021;161:1552-1566.e12. https://doi.org/10.1053/j.gastro.2021.08.003 
  28. Hieken TJ, Chen J, Hoskin TL, Walther-Antonio M, Johnson S, Ramaker S, et al. The microbiome of aseptically collected human breast tissue in benign and malignant disease. Sci Rep. 2016;6:30751. https://doi.org/10.1038/srep30751 
  29. Pickard JM, Zeng MY, Caruso R, Nunez G. Gut microbiota: role in pathogen colonization, immune responses, and inflammatory disease. Immunol Rev. 2017;279:70-89. https://doi.org/10.1111/imr.12567 
  30. Parida S, Wu S, Siddharth S, Wang G, Muniraj N, Nagalingam A, et al. A procarcinogenic colon microbe promotes breast tumorigenesis and metastatic progression and concomitantly activates Notch and β-catenin axes. Cancer Discov. 2021;11:1138-1157. https://doi.org/10.1158/2159-8290.CD-20-0537 
  31. Lehembre F, Yilmaz M, Wicki A, Schomber T, Strittmatter K, Ziegler D, et al. NCAM-induced focal adhesion assembly: a functional switch upon loss of E-cadherin. EMBO J. 2008;27:2603-2615. https://doi.org/10.1038/emboj.2008.178 
  32. Pohl C, Dikic I. Cellular quality control by the ubiquitin-proteasome system and autophagy. Science. 2019;366:818-822. https://doi.org/10.1126/science.aax3769 
  33. Pei J, Wang G, Feng L, Zhang J, Jiang T, Sun Q, et al. Targeting lysosomal degradation pathways: new strategies and techniques for drug discovery. J Med Chem. 2021;64:3493-3507. https://doi.org/10.1021/acs.jmedchem.0c01689 
  34. Steinhusen U, Weiske J, Badock V, Tauber R, Bommert K, Huber O. Cleavage and shedding of E-cadherin after induction of apoptosis. J Biol Chem. 2001;276:4972-4980. https://doi.org/10.1074/jbc.M006102200 
  35. Wu WJ, Hirsch DS. Mechanism of E-cadherin lysosomal degradation. Nat Rev Cancer. 2009;9:143; author reply 143. https://doi.org/10.1038/nrc2521-c1 
  36. Oerlemans R, Franke NE, Assaraf YG, Cloos J, van Zantwijk I, Berkers CR, et al. Molecular basis of bortezomib resistance: proteasome subunit beta5 (PSMB5) gene mutation and overexpression of PSMB5 protein. Blood. 2008;112:2489-2499. https://doi.org/10.1182/blood-2007-08-104950 
  37. Wu S, Lim KC, Huang J, Saidi RF, Sears CL. Bacteroides fragilis enterotoxin cleaves the zonula adherens protein, E-cadherin. Proc Natl Acad Sci U S A. 1998;95:14979-14984. https://doi.org/10.1073/pnas.95.25.14979 
  38. Heerboth S, Housman G, Leary M, Longacre M, Byler S, Lapinska K, et al. EMT and tumor metastasis. Clin Transl Med. 2015;4:6. https://doi.org/10.1186/s40169-015-0048-3