• Title/Summary/Keyword: Secret Number

Search Result 155, Processing Time 0.021 seconds

PRaCto: Pseudo Random bit generator for Cryptographic application

  • Raza, Saiyma Fatima;Satpute, Vishal R
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.12
    • /
    • pp.6161-6176
    • /
    • 2018
  • Pseudorandom numbers are useful in cryptographic operations for using as nonce, initial vector, secret key, etc. Security of the cryptosystem relies on the secret key parameters, so a good pseudorandom number is needed. In this paper, we have proposed a new approach for generation of pseudorandom number. This method uses the three dimensional combinational puzzle Rubik Cube for generation of random numbers. The number of possible combinations of the cube approximates to 43 quintillion. The large possible combination of the cube increases the complexity of brute force attack on the generator. The generator uses cryptographic hash function. Chaotic map is being employed for increasing random behavior. The pseudorandom sequence generated can be used for cryptographic applications. The generated sequences are tested for randomness using NIST Statistical Test Suite and other testing methods. The result of the tests and analysis proves that the generated sequences are random.

A Multi-Channel Security Card based on Cryptographically Secure Pseudo-Random Number Generator (난수생성기를 이용한 멀티채널 보안카드 설계)

  • Seo, Hwa-jeong;Seok, Seon-hee;Kim, Kyoung-hoon;Kim, Ho-won
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.25 no.3
    • /
    • pp.501-507
    • /
    • 2015
  • The online banking service handles a banking business over the internet, it is necessary to ensure that all financial transactions are processed securely. So, there are various authentication technique for e-banking service : a certificate, a personal identification number(PIN), a security card and a one-time password(OTP). Especially, the security card is most important means including secret information. If the secret information of card is leaked, it means not only loss of security but also easy to attack because security card is a difficult method to get. In this paper, we propose that a multi-channel security card saves an secret information in distributed channel. Proposed multi-channel security card reduces vulnerability of the exposed and has a function to prevent phishing attacks through decreasing the amount of information displayed and generating secret number randomly.

An Analysis of the Secret Routing Algorithm for Secure Communications (안전한 통신을 위한 비밀 경로 알고리즘의 분석)

  • Yongkeun Bae;Ilyong Chung
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.7 no.3
    • /
    • pp.105-116
    • /
    • 1997
  • Routing security is related to the confidentiality of the route taken by the data transmitted over the network. If the route is detected by the adversary, the probability is higher that the data are lost or the data can be intercepted by the adversary. Therefore, the route must be protected. To accomplish this, we select an intermediate node secretly and transmit the data using this intermediate node, instead of sending the data to the destination node using the shortest path. Furthermore, if we use a number of secret routes from the starting node to the destination node, data security is much stronger since we can transmit partial data rather than the entire data along a secret route. In this paper, the routing algorithm for multiple secret paths on MRNS(Mixed Radix Number System) Network, which requires O(1) for the time complexity where is the number of links on a node, is presented employing the HCLS(Hamiltonian Circuit Latin Square) and is analyzed in terms of entropy.

Applications of Image Steganography Using Secret Quantization Ranges (비밀 양자화 범위를 이용한 화상 심층암호 응용)

  • Shin Sang-Uk;Park Young-Ran
    • Journal of Korea Multimedia Society
    • /
    • v.8 no.3
    • /
    • pp.379-388
    • /
    • 2005
  • Image steganography Is a secret communication scheme to transmit a secret message, which is embedded into an image. The original image and the embedded image are called the cover image and the stego image, respectively. In other words, a sender embeds a secret message into a cover image and transmits a stego image to a receiver, while the receiver takes the stego image, extracts the message from it, and reads the message. General requirements for steganography are great capacity of secret messages, imperceptibility of stego images, and confidentiality between a sender and a receiver. In this paper, we propose a method for being satisfied with three requirements. In order to hide a secret message into a cover image safely, we use a difference value of two consecutive pixels and a secret quantization range. The former is used for the imperceptibility and the latter for the confidentiality. Furthermore, the number of insertion bits is changed according to the difference value for the imperceptibility. Through experiments, we have shown that our method is more good quality of stego images than many other related methods and increases the amount o( message insertion by performing dual insertion processing for some pixels.

  • PDF

Novel Secure Hybrid Image Steganography Technique Based on Pattern Matching

  • Hamza, Ali;Shehzad, Danish;Sarfraz, Muhammad Shahzad;Habib, Usman;Shafi, Numan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.3
    • /
    • pp.1051-1077
    • /
    • 2021
  • The secure communication of information is a major concern over the internet. The information must be protected before transmitting over a communication channel to avoid security violations. In this paper, a new hybrid method called compressed encrypted data embedding (CEDE) is proposed. In CEDE, the secret information is first compressed with Lempel Ziv Welch (LZW) compression algorithm. Then, the compressed secret information is encrypted using the Advanced Encryption Standard (AES) symmetric block cipher. In the last step, the encrypted information is embedded into an image of size 512 × 512 pixels by using image steganography. In the steganographic technique, the compressed and encrypted secret data bits are divided into pairs of two bits and pixels of the cover image are also arranged in four pairs. The four pairs of secret data are compared with the respective four pairs of each cover pixel which leads to sixteen possibilities of matching in between secret data pairs and pairs of cover pixels. The least significant bits (LSBs) of current and imminent pixels are modified according to the matching case number. The proposed technique provides double-folded security and the results show that stego image carries a high capacity of secret data with adequate peak signal to noise ratio (PSNR) and lower mean square error (MSE) when compared with existing methods in the literature.

PVD Image Steganography with Locally-fixed Number of Embedding Bits (지역적 삽입 비트를 고정시킨 PVD 영상 스테가노그래피)

  • Kim, Jaeyoung;Park, Hanhoon;Park, Jong-Il
    • Journal of Broadcast Engineering
    • /
    • v.22 no.3
    • /
    • pp.350-365
    • /
    • 2017
  • Steganography is a technique for secret data communication, which is not perceived by third person between a receiver and a transmitter. It has been developed for thousands of years for the transmission of military, diplomatic or business information. The development of digital media and communication has led to the development of steganography techniques in modern times. Technic of image steganography include the LSB, which fixes the number of embedded bits into a pixel, and PVD, which exploits the difference value in the neighboring pixel pairs. In the case of PVD image steganography, a large amount of information is embedded fluidly by difference value in neighboring pixel pairs and the designed range table. However, since the secret information in order is embedded, if an error of the number of embedded bits occurs in a certain pixel pair, all subsequent information will be destroyed. In this paper, we proposes the method, which improve the vulnerability of PVD property about external attack or various noise and extract secret information. Experimental process is comparison analysis about stego-image, which embedded various noise. PVD shows that it is not possible to preserve secret information at all about noise, but it was possible to robustly extract secret information for partial noise of stego-image in case of the proposed PVD image steganography with locally-fixed number of embedding bits.

The Design of Secret Multi-Paths on MRNS(Mixed Radix Numbers System) Network for Secure Transmission (안전한 전송을 위한 MRNS(Mixed Radix Number System)네트워크에서의 비밀 다중 경로의 설계)

  • Kim, Seong-Yeol;Jeong, Il-Yong
    • The Transactions of the Korea Information Processing Society
    • /
    • v.3 no.6
    • /
    • pp.1534-1541
    • /
    • 1996
  • Routing security is the confidentiality of route taken by the data transmitted over communication networks. If the route is detected by an adversary, the probability is high that the data lost or the data can be intercepted by the adversary. Therefore, the route must be protected. To accomplish this, we select an intermediate node secretly and transmit the data using this intermediate node, instead of sending the data to a destination node using the shortest direct path. Furthermore, if we use a number of secret routes from a node to a destination node, data security is much stronger since we can transmit partial data rather than entire data along a secret route. Finally, the idea above is implemented on MRNS Network.

  • PDF

Secure and Efficient Secret Sharing Scheme Based on Wide Pipe Hash Function (광역 파이프 해쉬 함수에 기반한 안전하고 효율적인 비밀분산)

  • Kim, Hie-Do;Won, Dong-Ho
    • The KIPS Transactions:PartC
    • /
    • v.13C no.7 s.110
    • /
    • pp.831-836
    • /
    • 2006
  • In this paper, we propose a secure and efficient secret sharing scheme Based on wide pipe hash function This scheme provides the property to share multiple secrets and allows participants to be added/deleted dynamically, without haying to redistribute new secret shares. Proposed scheme has advantage to detect cheating and identify of all cheater, regardless of their number. Futhermore, it is more secure and efficient than previous schemes based on hash function.

Efficient and General PVSS Based on ElGamal Encryption

  • Peng, Kun
    • Journal of Information Processing Systems
    • /
    • v.8 no.2
    • /
    • pp.375-388
    • /
    • 2012
  • PVSS stands for publicly verifiable secret sharing. In PVSS, a dealer shares a secret among multiple share holders. He encrypts the shares using the shareholders' encryption algorithms and publicly proves that the encrypted shares are valid. Most of the existing PVSS schemes do not employ an ElGamal encryption to encrypt the shares. Instead, they usually employ other encryption algorithms like a RSA encryption and Paillier encryption. Those encryption algorithms do not support the shareholders' encryption algorithms to employ the same decryption modulus. As a result, PVSS based on those encryption algorithms must employ additional range proofs to guarantee the validity of the shares obtained by the shareholders. Although the shareholders can employ ElGamal encryptions with the same decryption modulus in PVSS such that the range proof can be avoided, there are only two PVSS schemes based on ElGamal encryption. Moreover, the two schemes have their drawbacks. One of them employs a costly repeating-proof mechanism, which needs to repeat the dealer's proof at least scores of times to achieve satisfactory soundness. The other requires that the dealer must know the discrete logarithm of the secret to share and thus weakens the generality and it cannot be employed in many applications. A new PVSS scheme based on an ElGamal encryption is proposed in this paper. It employs the same decryption modulus for all the shareholders' ElGamal encryption algorithms, so it does not need any range proof. Moreover, it is a general PVSS technique without any special limitation. Finally, an encryption-improving technique is proposed to achieve very high efficiency in the new PVSS scheme. It only needs a number of exponentiations in large cyclic groups that are linear in the number of the shareholders, while all the existing PVSS schemes need at least a number of exponentiations in large cyclic groups that are linear in the square of the number of the shareholders.

Secret Key-Dimensional Distribution Mechanism Using Deep Learning to Minimize IoT Communication Noise Based on MIMO (MIMO 기반의 IoT 통신 잡음을 최소화하기 위해서 딥러닝을 활용한 비밀키 차원 분배 메커니즘)

  • Cho, Sung-Nam;Jeong, Yoon-Su
    • Journal of Convergence for Information Technology
    • /
    • v.10 no.11
    • /
    • pp.23-29
    • /
    • 2020
  • As IoT devices increase exponentially, minimizing MIMO interference and increasing transmission capacity for sending and receiving IoT information through multiple antennas remain the biggest issues. In this paper, secret key-level distribution mechanism using deep learning is proposed to minimize MIMO-based IoT communication noise. The proposed mechanism minimizes resource loss during transmission and reception process by dispersing IoT information sent and received through multiple antennas in batches using deep learning. In addition, the proposed mechanism applied a multidimensional key distribution processing process to maximize capacity through multiple antenna multiple stream transmission at base stations without direct interference between the APs. In addition, the proposed mechanism synchronizes IoT information by deep learning the frequency of use of secret keys according to the number of IoT information by applying the method of distributing secret keys in dimension according to the number of frequency channels of IoT information in order to make the most of the multiple antenna technology.