• Title/Summary/Keyword: Secret

Search Result 1,206, Processing Time 0.031 seconds

Efficient Scheme for Secret Hiding in QR Code by Improving Exploiting Modification Direction

  • Huang, Peng-Cheng;Li, Yung-Hui;Chang, Chin-Chen;Liu, Yanjun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.5
    • /
    • pp.2348-2365
    • /
    • 2018
  • QR codes as public patent are widely used to acquire the information in various fields. However, it faces security problem when delivering the privacy message by QR code. To overcome this weakness, we propose a secret hiding scheme by improving exploiting modification direction to protect the private message in QR code. The secret messages will be converted into octal digit stream and concealed to the cover QR code by overwriting the cover QR code public message bits. And the private messages can be faithfully decoded using the extraction function. In our secret hiding scheme, the QR code public message still can be fully decoded publicly from the marked QR codes via any standard QR Code reader, which helps to reduce attackers' curiosity. Experiments show that the proposed scheme is feasible, with high secret payload, high security protection level, and resistant to common image post-processing attacks.

Recoverable Private Key Scheme for Consortium Blockchain Based on Verifiable Secret Sharing

  • Li, Guojia;You, Lin;Hu, Gengran;Hu, Liqin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.8
    • /
    • pp.2865-2878
    • /
    • 2021
  • As a current popular technology, the blockchain has a serious issue: the private key cannot be retrieved due to force majeure. Since the outcome of the blockchain-based Bitcoin, there have been many occurrences of the users who lost or forgot their private keys and could not retrieve their token wallets, and it may cause the permanent loss of their corresponding blockchain accounts, resulting in irreparable losses for the users. We propose a recoverable private key scheme for consortium blockchain based on the verifiable secret sharing which can enable the user's private key in the consortium blockchain to be securely recovered through a verifiable secret sharing method. In our secret sharing scheme, users use the biometric keys to encrypt shares, and the preset committer peers in the consortium blockchain act as the participants to store the users' private key shares. Due to the particularity of the biometric key, only the user can complete the correct secret recovery. Our comparisons with the existing mnemonic systems or the multi-signature schemes have shown that our scheme can allow users to recover their private keys without storing the passwords accurately. Hence, our scheme can improve the account security and recoverability of the data-sharing systems across physical and virtual platforms that use blockchain technology.

GROUP SECRET KEY GENERATION FOR 5G Networks

  • Allam, Ali M.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.8
    • /
    • pp.4041-4059
    • /
    • 2019
  • Key establishment method based on channel reciprocity for time division duplex (TDD) system has earned a vital consideration in the majority of recent research. While most of the cellular systems rely on frequency division duplex (FDD) systems, especially the 5G network, which is not characterized by the channel reciprocity feature. This paper realizes the generation of a group secret key for multi-terminals communicated through a wireless network in FDD mode, by utilizing the nature of the physical layer for the wireless links between them. I consider a new group key generation approach, which using bitwise XOR with a modified pairwise secret key generation approach not based on the channel reciprocity feature. Precisely, this multi-node secret key agreement technique designed for three wireless network topologies: 1) the triangle topology, 2) the multi-terminal star topology, and 3) the multi-node chain topology. Three multi-node secret key agreement protocols suggest for these wireless communication topologies in FDD mode, respectively. I determine the upper bound for the generation rate of the secret key shared among multi-node, for the three multi-terminals topologies, and give numerical cases to expose the achievement of my offered technique.

Steganographic Method on Spatial Domain Using Modular Characteristic (모듈러 특성을 이용한 공간영역 기반의 심층암호)

  • Park Young-Ran;Shin Sang-Uk
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.16 no.2
    • /
    • pp.113-119
    • /
    • 2006
  • Image steganography is a secret communication method used to transmit secret messages that have been embedded into an image. To accommodate a secret message in a digital image, the original cover image is modified by the embedding algorithm. As a result, a stego image is obtained. The sender hides the secret message in a cover image that has no meaning, and then transmits the stego image to the receiver. In this paper, we propose a steganographic method based on spatial domain to embed a secret message using a difference value of two consecutive pixels and a secret quantization range. Especially, we use the modular operation for increasing of insertion information. Through experiments, we have shown that the proposed method has much mon payload capacity, average 60 percent, than some existing methods by using modular operation.

Authenticated Quantum Secret Sharing using GHZ state swapping (GHZ 상태 교환을 이용한 인증된 양자 비밀 공유)

  • Lee, Duk-Jin;Lee, Hwa-Yean;Hong, Chang-Ho;Lim, Jong-In;Yang, Hyoung-Jin
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.16 no.6
    • /
    • pp.123-134
    • /
    • 2006
  • We propose a quantum secret sharing protocol which can authenticate more than half of members using GHZ state swapping. The Trusted Third Party, Trent can authenticate all members using previously shared ID among Trent distributing his message and the members wanting to reconstruct the message. Authenticated members can reconstruct a secret message through GHZ swapping. Moreover, this protocol is efficient to expand the number of members to arbitrary number n, so it is a close quantum secret sharing protocol to classical secret sharing protocol.

Applications of Image Steganography Using Secret Quantization Ranges (비밀 양자화 범위를 이용한 화상 심층암호 응용)

  • Shin Sang-Uk;Park Young-Ran
    • Journal of Korea Multimedia Society
    • /
    • v.8 no.3
    • /
    • pp.379-388
    • /
    • 2005
  • Image steganography Is a secret communication scheme to transmit a secret message, which is embedded into an image. The original image and the embedded image are called the cover image and the stego image, respectively. In other words, a sender embeds a secret message into a cover image and transmits a stego image to a receiver, while the receiver takes the stego image, extracts the message from it, and reads the message. General requirements for steganography are great capacity of secret messages, imperceptibility of stego images, and confidentiality between a sender and a receiver. In this paper, we propose a method for being satisfied with three requirements. In order to hide a secret message into a cover image safely, we use a difference value of two consecutive pixels and a secret quantization range. The former is used for the imperceptibility and the latter for the confidentiality. Furthermore, the number of insertion bits is changed according to the difference value for the imperceptibility. Through experiments, we have shown that our method is more good quality of stego images than many other related methods and increases the amount o( message insertion by performing dual insertion processing for some pixels.

  • PDF

Secret Sharing Scheme using Gray Code based on Steganography (스테가노그라피 기반에서 그레이코드를 사용한 비밀공유 기법)

  • Kim, Cheon-Shik;Yoon, Eun-Jun;Hong, You-Sik;Kim, Hyoung-Joong
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.46 no.1
    • /
    • pp.96-102
    • /
    • 2009
  • Due to the rapid growth of the Internet, it is possible to distribute the digital content efficiently. However, the need for image data protection and secret communication technique is also on the rise because of an infringement of the copyright by malicious attackers. Shamir and Lin-Tsai proposed simple secret image encryption algorithms based on the principle of secret sharing, respectively. However, their secret sharing schemes have a serious problem which can be declined the image quality and it is possible for third party to know embed information. In this paper, we propose a new secret sharing scheme using gray code that can be increased the image quality and security. As a result of our experiment, the proposed scheme is not only shown of good image quality and but also provide enhanced security compare with Shamir and Lin-Tasi's schemes.

Share Renewal Scheme in Proactive Secret Sharing for Threshold Cryptosystem (임계 암호시스템 구현을 위한 능동적 비밀 분산에서의 공유 갱신 방법)

  • 이윤호;김희열;정병천;이재원;윤현수
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.30 no.5_6
    • /
    • pp.239-249
    • /
    • 2003
  • The secret sharing is the basic concept of the threshold cryptosystem and has an important position in the modern cryptography. At 1995, Jarecki proposed the proactive secret sharing to be a solution of existing the mobile adversary and also proposed the share renewal scheme for (k, n) threshold scheme. For n participants in the protocol, his method needs $O(n^2)$ modular exponentiation per one participant. It is very high computational cost and is not fit for the scalable cryptosystem. In this paper, we propose the efficient share renewal scheme that need only O(n) modular exponentiation per participant. And we prove our scheme is secure if less than img ${\frac{1}{2}}$ n-1 adversaries exist and they are static adversary.

Novel Secure Hybrid Image Steganography Technique Based on Pattern Matching

  • Hamza, Ali;Shehzad, Danish;Sarfraz, Muhammad Shahzad;Habib, Usman;Shafi, Numan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.3
    • /
    • pp.1051-1077
    • /
    • 2021
  • The secure communication of information is a major concern over the internet. The information must be protected before transmitting over a communication channel to avoid security violations. In this paper, a new hybrid method called compressed encrypted data embedding (CEDE) is proposed. In CEDE, the secret information is first compressed with Lempel Ziv Welch (LZW) compression algorithm. Then, the compressed secret information is encrypted using the Advanced Encryption Standard (AES) symmetric block cipher. In the last step, the encrypted information is embedded into an image of size 512 × 512 pixels by using image steganography. In the steganographic technique, the compressed and encrypted secret data bits are divided into pairs of two bits and pixels of the cover image are also arranged in four pairs. The four pairs of secret data are compared with the respective four pairs of each cover pixel which leads to sixteen possibilities of matching in between secret data pairs and pairs of cover pixels. The least significant bits (LSBs) of current and imminent pixels are modified according to the matching case number. The proposed technique provides double-folded security and the results show that stego image carries a high capacity of secret data with adequate peak signal to noise ratio (PSNR) and lower mean square error (MSE) when compared with existing methods in the literature.

Research of Secret Communication Using Quantum key Distribution and AES (양자키 교환과 AES를 이용한 비밀통신 연구)

  • Choung, Young-Chul;Rim, Kwang-Cheol
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.1
    • /
    • pp.84-90
    • /
    • 2014
  • Secret communication has developed from analogue communication to digital one. Secret communication which is based on digital communication has been designed succeeding safety of one-time pad. One-time pad's safety is attributed to the security of secret key's mutual storage and mutual synchronization that is the key's interchange basis is one of the essential factors. This manuscript examines mathematical stability of BB84 algorithm which is one of the quantum cryptography system, and conducts transmission of quantum key. The created key suggests One-time Pad algorithm which interchanges ciphertext implemented AES's 64th round.